Synthesis of rGO-TiO2 Composite for Al-ion Battery with Enhanced Electrical Conductivity

Authors

  • Ruli Afian Department of Physics, Faculty of Mathematics and Natural Science, University of Padjadjaran, Sumedang, 45363, Indonesia Author
  • Ferry Faizal Department of Physics, Faculty of Mathematics and Natural Science, University of Padjadjaran, Sumedang, 45363, Indonesia Author
  • Camellia Panatarani Department of Physics, Faculty of Mathematics and Natural Science, University of Padjadjaran, Sumedang, 45363, Indonesia Author
  • I Made Joni Department of Physics, Faculty of Mathematics and Natural Science, University of Padjadjaran, Sumedang, 45363, Indonesia Author

DOI:

https://doi.org/10.35895/jpsi.1.2.87-97.2025

Keywords:

Aluminum-ion batteries, Aluminum-ion batteries, rGO–TiO₂ composite, rGO–TiO₂ composite, Electrochemical performance, Electrochemical performance, Ion diffusivity, Ion diffusivity

Abstract

Alternative batteries to lithium-ion are attracting growing attention due to the urgent demand for high energy density and limited lithium resources. Aluminum-ion (Al-ion) batteries are promising since aluminum is abundant, recyclable, and inexpensive. They also provide theoretically high specific energy and power through a three-electron redox reaction. However, challenges remain because no positive electrode material has yet shown efficient and reversible aluminum-ion storage. This study reports the synthesis of a reduced graphene oxide–titanium dioxide (rGO–TiO₂) composite and its evaluation as an electrode for Al-ion batteries. The rGO–TiO₂ composites were prepared by hydrothermal reaction with TiO₂ contents of 2, 5, and 10 wt.%. Characterization using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) confirmed that graphite oxide (GO) was successfully reduced to rGO, as indicated by a peak at 2θ = 24.30°. Electrochemical testing of rGO–TiO₂ based Al-ion batteries showed improved ion diffusivity of 1.39 × 10⁻⁶ – 3.83 × 10⁻⁶ cm/s and charge–discharge capacities of 6.9–7.2 mAh/g at 1C (0.1–0.3 mA·g⁻¹). These results demonstrate the key role of enhanced ion diffusivity in advancing high-performance Al-ion batteries.

References

Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451(7179), 652–657.

Ashurov, I., Iskandarov, S., Khalilov, U., & Ashurov, K. (2022). Current challenges, progress, and future perspectives of aluminum-ion batteries. Applied Solar Energy, 58(3), 334–354. https://doi.org/10.3103/S0003701X22030033.

Craig, B., Schoetz, T., Cruden, A., & de-Leon, C. P. (2020). Review of current progress in non-aqueous aluminium batteries. Renewable and Sustainable Energy Reviews, 133, 110100. https://doi.org/10.1016/j.rser.2020.110100.

Das, S. K. (2018). Graphene: A cathode material of choice for an aluminum-ion battery. Angewandte Chemie International Edition. 57(51). 16606-16617. https://doi.org/10.1002/anie.201802595.

Fazeli, M., Florez, J. P., & Simão, R. A. (2019). Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Composites Part B: Engineering, 163, 207–216.

Hu, Z., Liu, Q., Chou, S. L., & Dou, S. X. (2021). Two-dimensional material-based heterostructures for rechargeable batteries. Cell Reports Physical Science, 2(1), 100286.

Li, C., Hou, C. C., Chen, L., Kaskel, S., & Xu, Q. (2021). Rechargeable Al-ion batteries. Energy Chemistry, 3(2), 100049. https://doi.org/10.1016/j.enchem.2020.100049.

Li, Q., Yi, D., Dang, G., Zhao, H., Lu, T., Wang, Q., Lai, C., & Xie, J. (2023). Electrochemical impedance spectrum (EIS) variation of lithium-ion batteries due to resting times in the charging processes. World Electric Vehicle Journal, 14(12), 321. https://doi.org/10.3390/wevj14120321

Lin, M. C., Gong, M., Lu, B., Wu, Y., Wang, D. Y., Guan, M., Angell, M., Chen, C., Yang, J., Hwang, B. J., & Dai, H. (2015). An ultrafast rechargeable aluminum-ion battery. Nature, 520(7547), 324–328.

Liu, S., Hu, J. J., Yan, N. F., Pan, G. L., Li, G. R., & Gao, X. P. (2012). Aluminum storage behavior of anatase TiO₂ nanotube arrays in aqueous solution for aluminum ion batteries. Energy & Environmental Science, 5(12), 9743.

Low, F. W., Lai, C. W., Asim, N., Akhtaruzzaman, M., Alghoul, M., Tiong, S. K., & Amin, N. (2019). An investigation on titanium doping in reduced graphene oxide by RF magnetron sputtering for dye-sensitized solar cells. Solar Energy, 188, 10–18.

Ma, D., Yuan, D., de-León, C. P., Jiang, Z., Xia, X., & Pan, J. (2023). Current progress and future perspectives of electrolytes for rechargeable aluminum-ion batteries. Energy & Environmental Materials, 6(1), e12301. https://doi.org/10.1002/eem2.12301.

Minella, M., Versaci, D., Casino, S., Di Lupo, F., Minero, C., Battiato, A., Penazzi, N., & Bodoardo, S. (2017). Anodic materials for lithium-ion batteries: TiO₂-rGO composites for high power applications. Electrochimica Acta, 230, 132–140. https://doi.org/10.1016/j.electacta.2017.01.190.

Qu, D., Ji, W., & Qu, H. (2022). Probing process kinetics in batteries with electrochemical impedance spectroscopy. Communications Materials, 3(1), 61. https://doi.org/10.1038/s43246-022-00284-w.

Rasheed, R. T., Al-Algawi, S. D., & Rhoomi, Z. R. (2017). Synthesis and antibacterial activity of rutile-TiO₂ nanopowder prepared by hydrothermal process. Pure and Applied Sciences, 25(5), 1744–1754.

Setianto, S., Panatarani, C., Singh, D., & Joni, I. M. (2023). Semi-empirical infrared spectra simulation of pyrene-like molecules: Insight for simple analysis of functionalization graphene quantum dots. Scientific Reports, 13(1), 2282. https://doi.org/10.1038/s41598-023-29486-z.

Shenouda, A. Y., & Liu, H. K. (2010). Preparation, characterization, and electrochemical performance of Li₂CuSnO₄ and Li₂CuSnSiO₆ electrodes for lithium batteries. Journal of the Electrochemical Society, 157(11), A1183. https://doi.org/10.1149/1.3479425

Song, Y., Sheng, L., Wang, L., Xu, H., & He, X. (2021). From separator to membrane: Separators can function more in lithium-ion batteries. Electrochemistry Communications, 124, 106948.

Tomasz, K., Wojciech, J. K., & Jagoda, L. (2018). Biomedical applications of graphene-based structures. Nanomaterials, 8(11), 944.

Vadhva, P., Hu, J., Johnson, M. J., Stocker, R., Braglia, M., Brett, D. J. L., & Rettie, A. J. E. (2021). Electrochemical impedance spectroscopy for all-solid-state batteries: Theory, methods and future outlook. ChemElectroChem, 8(11), 1930–1947.

Vanitha, M., Joni, I. M., Wibawa, B. M., & Panatarani, C. (2019). Metal oxides, metal sulphides and hybrid cathode materials for aluminium ion batteries – A mini review. IOP Conference Series: Materials Science and Engineering, 550(1), 012003.

Wang, J. (2014). Analytical electrochemistry (2nd ed., pp. 100–140). Wiley-VCH.

Wu, J., Wu, D., Zhao, M., Wen, Z., Jiang, J., Zeng, J., & Zhao, J. (2020). Rod-shaped Cu₁.₈₁Te as a novel cathode material for aluminum-ion batteries. Dalton Transactions, 49(3), 729–736.

Wu, X., Qin, N., Wang, F., Li, Z., Qin, J., Huang, G., & Deng, J. (2021). Reversible aluminum ion storage mechanism in Ti-deficient rutile titanium dioxide anode for aqueous aluminum-ion batteries. Energy Storage Materials, 37, 619–627.

Yang, Z., Wang, F., Meng, P., Luo, J., & Fu, C. (2022). Recent advances in developing organic positive electrode materials for rechargeable aluminum-ion batteries. Energy Storage Materials, 51, 63–79. https://doi.org/10.1016/j.ensm.2022.06.018

Yuan, D., Zhao, J., Manalastas, W. J., Kumar, S., & Srinivasan, M. (2020). Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2(3), 248–263.

Zafar, Z. A., Imtiaz, S., Razaq, R., Ji, S., Huang, T., Zhang, Z., Huang, Y., & Anderson, J. A. (2017). Cathode materials for rechargeable aluminum batteries: Current status and progress. Journal of Materials Chemistry A, 5(12), 5646–5660.

Zhang, K., Kirlikovali, K. O., Suh, J. M., Farha, O. K., Choi, J. W., Jang, H. W., Varma, R. S., & Shokouhimehr, M. (2020). Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress. ACS Applied Energy Materials, 3(7), 6019–6035.

Zhang, Y., Liu, S., Ji, Y., Ma, J., & Yu, H. (2018). Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives. Advanced Materials, 30(38), 1706310. https://doi.org/10.1002/adma.201706310

Zhu, N., Wu, F., Wang, Z., Ling, L., Yang, H., Gao, Y., Guo, S., Suo, L., Li, H., Xu, H., Bai, Y., & Wu, C. (2020). Reversible Al³⁺ storage mechanism in anatase TiO₂ cathode material for ionic liquid electrolyte-based aluminum-ion batteries. Journal of Energy Chemistry, 51, 72–80. https://doi.org/10.1016/j.jechem.2020.03.032

Downloads

Published

2025-10-10

How to Cite

Synthesis of rGO-TiO2 Composite for Al-ion Battery with Enhanced Electrical Conductivity. (2025). Journal of the Physical Society of Indonesia, 1(2), 87-97. https://doi.org/10.35895/jpsi.1.2.87-97.2025

Similar Articles

You may also start an advanced similarity search for this article.