A Quantum Mechanical Aspect of Cold Fusion

Authors

  • Ayan Kumar Makar Plasma Science Society of India Author

DOI:

https://doi.org/10.35895/jpsi.1.1.61-75.2025

Keywords:

Quantum, bosons, tunneling, plasma, fusion

Abstract

The current study presents a quantum mechanical model for low-energy nuclear fusion in a deuterium-loaded palladium lattice, based on the modification of the Coulomb interaction between deuterons due to environmental screening effects. In this framework, deuterons are treated as charged bosons embedded in a conductive metallic lattice, where their mutual repulsion is significantly reduced by the surrounding conduction electron cloud and collective plasma behavior. The interaction is modeled using a screened Coulomb (Yukawa-type) potential, and the probability of nuclear fusion is evaluated through a semiclassical WKB approximation. Numerical estimates incorporating realistic deuteron densities and lattice parameters yield tunneling probabilities and fusion rates consistent with non-negligible low-temperature fusion activity. The results obtained indicate that under high deuterium loading conditions, the environment-induced screening of the Coulomb barrier can enhance tunneling sufficiently to allow measurable fusion rates, offering a plausible mechanism for solid-state fusion without the need for extreme thermal conditions as one of the aspects of cold fusion.

References

Appleby, A. J., Kim, Y. J., Murphy, O. J., & Srinivasan, S. (1990). Anomalous calorimetric results during long-term evolution of deuterium on palladium from alkaline deuteroxide electrolyte. The First Annual Conference on Cold Fusion.

Balantekin, A. B., & Takigawa, N. (1998). Quantum tunneling in nuclear fusion. Reviews of Modern Physics, 70(1), 77.

Berlinguette, C. P., Chiang, Y.-M., Munday, J. N., Schenkel, T., Fork, D. K., Koningstein, R., & Trevithick, M. D. (2019). Revisiting the cold case of cold fusion. Nature, 570(7759), 45–51.

Beuhler, R. J., Friedlander, G., & Friedman, L. (1989). Cluster-impact fusion. Physical Review Letters, 63(12), 1292.

Czerski, K., Huke, A., Heide, P., & Ruprecht, G. (2004). The 2H (d, p) 3H reaction in metallic media at very low energies. Europhysics Letters, 68(3), 363.

Dong, S. Y., Wang, K. L., Feng, Y. Y., Chang, L., Luo, C. M., Hu, R. Y., Zhou, P. L., Mo, D. W., Zhu, Y. F., & Song, C. L. (1991). Precursors to “Cold Fusion” Phenomenon and the Detection of Energetic Charged Particles in Deuterium/Solid Systems. Fusion Technology, 20(3), 330–333.

Egorov, V. K., & Egorov, E. V. (2019). About cold fusion possibilities in frame of the waveguide-resonance propagation of radiation fluxes. Journal of Physics: Conference Series, 1370(1), 012021.

Feng, S. (1989). Enhancement of cold fusion rate by electron polarization in palladium deuterium solid. Solid State Communications, 72(2), 205–209.

Fleischmann, M. (1990). OVERVIEW OF COLD FUSION PHENOMENA.

Fleischmann, M., Pons, S., & Hawkins, M. (1989). Electrochemically induced nuclear fusion of deuterium. In J. Electroanal. Chem (Vol. 261).

Freire, L. O., & de Andrade, D. A. (2021). Preliminary survey on cold fusion: It’s not pathological science and may require revision of nuclear theory. Journal of Electroanalytical Chemistry, 903, 115871.

Gou, Q.-Q. (2010). Full atomic theory of cold fusion.

Hora, H., Kelly, J. C., Patel, J. U., Prelas, M. A., Miley, G. H., & Tompkins, J. W. (1993). Screening in cold fusion derived from DD reactions. Physics Letters A, 175(2), 138–143.

Hussein, A. A., Al-agealy, H. J. M., & Majeed, R. H. (2020). Theoretical Study and calculation The cold Reaction Rate of Deuteron Fusion In Nickel Metal Using Bose–Einstein Condensate Theory. IOP Conference Series: Materials Science and Engineering, 871(1), 012085.

Jiang, S.-S., He, M., Wu, S.-Y., & Qi, B.-J. (2012). Anomalously high isotope ratio 3He/4He and tritium in deuterium-loaded metal: evidence for nuclear reaction in metal hydrides at low temperature. Chinese Physics Letters, 29(1), 012503.

Jones, S. E., Palmer, E. P., Czirr, J. B., Decker, D. L., Jensen, G. L., Thorne, J. M., Taylor, S. F., & Rafelski, J. (1989). Observation of cold nuclear fusion in condensed matter. Nature, 338(6218), 737–740.

Kasagi, J., Yuki, H., Baba, T., Noda, T., Ohtsuki, T., & G. Lipson, A. (2002). Strongly enhanced DD fusion reaction in metals observed for keV D+ bombardment. Journal of the Physical Society of Japan, 71(12), 2881–2885.

Kesner, J., Garnier, D. T., Hansen, A., Mauel, M., & Bromberg, L. (2003). Helium catalysed D–D fusion in a levitated dipole. Nuclear Fusion, 44(1), 193.

Kühne, R. W. (1994). The possible hot nature of cold fusion. Fusion Technology, 25(2), 198–202.

Leggett, A. ~J., & Baym, G. (1989). Can solid-state effects enhance the cold-fusion rate? 340(6228), 45–46. https://doi.org/10.1038/340045a0

Lu, X., Wang, H. Y., Tian, J., Jin, L. H., Shen, B. J., & Zhao, X. Le. (2013). Abnormal Heat by Thermal Changing in a D-Pd Gas-Loading System. Advanced Materials Research, 614, 253–258.

McKubre, M., Tanzella, F., Hagelstein, P. L., Mullican, K., & Trevithick, M. (2006). The need for triggering in cold fusion reactions. In Condensed Matter Nuclear Science (pp. 199–212). World Scientific.

Palleschi, V., Harith, M. A., Salvetti, G., Singh, D. P., & Vaselli, M. (1990). A plasma model of the process of cold nuclear fusion in metals. Physics Letters A, 148(6–7), 345–350.

Parmenter, R. H., & Lamb Jr, W. E. (1990). Cold fusion in palladium: a more realistic calculation. Proceedings of the National Academy of Sciences, 87(21), 8652–8654.

Scaramuzzi, F. (2004). Gas loading of deuterium in palladium at low temperature. Journal of Alloys and Compounds, 385(1–2), 19–27.

Schreiber, M., Gur, T. M., Lucier, G., Ferrante, J. A., Chao, J., & Huggins, R. A. (1990). Recent measurements of excess energy production in electrochemical cells containing heavy water and palladium. Proc. 1st Annual Conf. Cold Fusion, Salt Lake City, UT, 44.

Scott, C. D., Mrochek, J. E., Scott, T. C., Michaels, G. E., Newman, E., & Petek, M. (1990). The initiation of excess power and possible products of nuclear interactions during the electrolysis of heavy water. Oak Ridge National Lab., TN (USA).

Szpak, S., Mosier-Boss, P. A., & Gordon, F. E. (2007). Further evidence of nuclear reactions in the Pd/D lattice: emission of charged particles. Naturwissenschaften, 94, 511–514.

Tabet, E., & Tenenbaum, A. (1990). Nuclear reactions from lattice collapse in a cold fusion model. Physics Letters A, 144(6–7), 301–305.

Toimela, T. (2006). Effective interaction potential in the deuterium plasma and multiple resonance scattering. In Condensed Matter Nuclear Science (pp. 622–634). World Scientific.

Vaidya, S. N. (1993). Comments on the model for coherent deuteron-deuteron fusion in crystalline Pd-D lattice. Fusion Technology, 24(1), 112–114.

Van Siclen, C. D., & Jones, S. E. (1986). Piezonuclear fusion in isotopic hydrogen molecules. Journal of Physics G: Nuclear Physics, 12(3), 213.

Yamaguchi, E., & Nishioka, T. (1990). Cold nuclear fusion induced by controlled out-diffusion of deuterons in palladium. Japanese Journal of Applied Physics, Letters, 29(4), 666–669.

Yamaguchi, E., Nishioka, T., Rafelski, J., Gajda, M., Harley, D., & Jones, S. E. (1990). Cold Nuclear Fusion Induced by Controlled Out-Diffusion of Deuterons in Palladium.

Downloads

Published

2025-05-31

How to Cite

A Quantum Mechanical Aspect of Cold Fusion. (2025). Journal of the Physical Society of Indonesia, 1(1), 61-75. https://doi.org/10.35895/jpsi.1.1.61-75.2025