Existence of Fiber Bragg Grating Sensors Based on Power Input and Transmission Distance

Authors

  • Saktioto Saktioto Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia Author
  • Shantela Hanna Mastaria Bintang Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia Author
  • Tengku Emrinaldi Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia Author
  • Zamri Zamri Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia Author
  • Mohd Rendy Samudra Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia Author
  • Yan Soerbakti Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia Author

DOI:

https://doi.org/10.35895/jpsi.1.1.45-50.2025

Keywords:

Bit Error Rate, Fiber Bragg Grating, Q-Factor, Transmission

Abstract

Optical fiber was chosen as a transmission medium because of its ability to transmit data with high power, high speed and low attenuation. Despite these advantages, optical fiber still faces challenges such as attenuation and dispersion which can reduce data transmission performance. This research examines the performance of fiber optic-based communication systems using fiber Bragg grating (FBG) sensors, especially in overcoming linear effects that affect transmission quality. In designing this system, researchers varied the transmission distance from 10 – 150 km, and adjusted the input power from 2 – 20 dBm. The research results show that uniform FBG is more effective in improving signal quality and reducing transmission errors compared to Gaussian FBG. The use of FBGs on coarse wavelength division multiplexing (CWDM) channels also improves system performance, with better quality factors and reduced bit error rates (BER). However, at a distance of more than 60 km, the signal quality decreases due to high noise, which also reduces the Q-factor value, the Q-factor value drops significantly from 61.7699 to 3.0866. Overall, uniform FBG provides more stable and robust data transmission, and increases transmission capacity compared to Gaussian FBG

References

Gong, C. & Zhang, X. (2019). Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 363(6428).

El-Hageen, H. M., Alatwi, A. M., & Rashed, A. N. Z. (2020). Silicon-germanium dioxide and aluminum indium gallium arsenide-based acoustic optic modulators. Open engineering, 10(1), 506-511.

Fauzi, A. (2021). Perancangan konfigurasi FTTH jaringan akses fiber optik dengan optisystem dalam modul praktikum komunikasi optik. Indonesian Journal of Applied Informatics, 5(2), 146-154.

El-Gammal, H. M., El-Badawy, E. S. A., Rizk, M. R., & Aly, M. H. (2020). A new hybrid FBG with a π-shift for temperature sensing in overhead high voltage transmission lines. Optical and Quantum Electronics, 52, 1-24.

Harpawi, N., Putra, E. H. P. H., & Qory, R. R. (2017). Desain jaringan fiber optik menggunakan Optisystem untuk kawasan Kota Pekanbaru. Jurnal Elementer, 3(2), 21-30.

Hidayah, F. N. & Haikal, H. (2022). Analisis pembebanan terhadap panjang gelombang cahaya berbasis sensor fiber Bragg grating (FBG). Teknika, 7(3), 116-122.

Huang, L. J., Mao, X. T., Li, Y. Y., Liu, D. D., Fan, K. Q., Liu, R. B., Wu, T. T., Wang, H. L., Zhang, Y., Yang, B., Ye, C. Q., Zhong, J. Y., Chai, R. J., Cao, Q., & Jin, J. (2021). Multiomics analyses reveal a critical role of selenium in controlling T cell differentiation in Crohn’s disease. Immunity, 54(8), 1728-1744.

Ikhsan, R., Syahputra, R. F., Saktioto & Okfalisa. (2018). Performance control of semiconductor optical amplifier and fiber Raman amplifier in communication system. 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 32-36.

Juwari, J., Jayadi, P., & Sussolaikah, K. (2022). Analisis redaman kabel fiber optic patchcord single core. Jurikom, 9(2), 202-210.

Li, T., Shi, C., Tan, Y., Li, R., Zhou, Z., & Ren, H. (2016). A diaphragm type fiber Bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation. IEEE Sensors Journal, 17(4), 1021-1029.

Mnati, M. J., Chisab, R. F., Al-Rawi, A. M., Ali, A. H., & Van den Bossche, A. (2021). An open-source non-contact thermometer using low-cost electronic components. HardwareX, 9.

Nor, S. R. M., Yusof, F., & Norrulashikin, S. M. (2021). Coherent mortality model in a state-space approach. Sains Malaysiana, 50(4), 1101-1111.

Qiao, X., Shao, Z., Bao, W., & Rong, Q. (2017). Fiber Bragg grating sensors for the oil industry. Sensors, 17(3), 429.

Tahhan, S. R., Ali, M. H., & Abass, A. K. (2019). Characteristics of dispersion compensation for 32 channels at 40 Gb/s under different techniques. Journal of Optical Communications, 41(1), 57-65.

Saktioto, T., Ramadhan, K., Soerbakti, Y., Syahputra, R. F., Irawan, D., & Okfalisa, O. (2021). Apodization sensor performance for TOPAS fiber Bragg grating. Telkomnika, 19(6), 1982-1991.

Skrzetuska, E. & Wojciechowski, J. (2020). Investigation of the impact of environmental parameters on breath frequency measurement by a textile sensor. Sensors, 20(4), 1179.

Pertiwi, A. R., Saktioto, S., Widiyatmoko, B., & Hanto, D. Analysis of pressure distribution in cylindrical tube fluid flow using a fiber Bragg grating. Indonesian Physics Communication, 21(2), 109-114.

Maulana, A. M., Ramadhan, K., & Irawan, D. (2023). Analysis of fluid flow in a cylindrical tube using fiber Bragg grating. Science, Technology and Communication Journal, 4(1), 17-22.

Ramadhan, K., Irawan, D., & Yupapin, P. (2023). Core multi-layer dispersion on single-mode optical fiber. Science, Technology and Communication Journal, 3(3), 89-94.

Downloads

Published

2025-05-30

How to Cite

Existence of Fiber Bragg Grating Sensors Based on Power Input and Transmission Distance. (2025). Journal of the Physical Society of Indonesia, 1(1), 45-50. https://doi.org/10.35895/jpsi.1.1.45-50.2025

Similar Articles

You may also start an advanced similarity search for this article.