Vulnerability Analysis of Andalas University Library Building Using Microtremor HVSR Method
DOI:
https://doi.org/10.35895/jpsi.1.1.36-44.2025Keywords:
Amplification, Natural Frequency, HVSR, Seismic Vulnerability IndexAbstract
This research aims to analyze the vulnerability of the Andalas University Library UPT Building which is located in an earthquake-prone area using the microtremor HVSR method. Measurements were taken at 20 points on each floor of the building to determine the natural frequency value, amplification factor, and seismic vulnerability index. The results show that the natural frequency values have a stable distribution pattern on most floors, with small variations on certain floors due to mass distribution or structural stiffness. The highest amplification values were found on floors 2 and 3, indicating the potential for local resonance. The highest seismic vulnerability index is on floor 2 with values up to 750, indicating the need for more attention to the design and structural strength of that floor. The HVSR method proved effective in analyzing the dynamic characteristics and potential vulnerability of buildings to earthquakes, providing important information for risk mitigation in disaster-prone areas.
References
Arifin, S. S. (2014). Penentuan Zona Rawan Guncangan Bencana Gempa Bumi Berdasarkan Analisis Nilai Amplifikasi HVSR Mikrotremor dan Analisis Periode Dominan Daerah Liwa dan Sekitarnya. JGE (Jurnal Geofisika Eksplorasi), 2(01), 30-40.
Arintalofa, V., Yulianto, G. & Harmoko, U. 2020, ‘Analisa mikrotremor menggunakan metode HVSR untuk mengetahui karakteristik bawah permukaan manifestasi panas bumi Diwak dan Derekan berdasarkan nilai Vp’, Jurnal Energi Baru dan Terbarukan, vol. 1, no. 2, pp. 54-61.
Dec, M. (2011). An Analysis of Amplification Effects at Selected Polish Seismic Stations. Geophysics in Mining and Environmental Protection, 49-58.
Gosar, A. 2007, ‘Microtremor HVSR study for assessing site effects in the Bovec Basin (NW Slovenia) related to the 1998 MW 5.6 and 2004 MW 5.2 earthquakes’, Engineering Geology, vol. 91, pp. 178-193, viewed 4 January 2025, https://doi.org/10.1016/j.enggeo.2007.01.003.
Jung, H. O., Kim, H. J., Jo, B. G., & Park, N. R. (2010). The microtremor HVSRs in the SW Korean Peninsula I: Characteristics of the HVSR peak frequency and amplification. Journal of the Korean earth science society, 31(6), 541-554.
Kumar, S., Singh, P., Sushil, R., Singh, P. & Tiwari, A. 2021, ‘Microtremor measurement to evaluate site characteristics by horizontal to vertical spectral ratio technique in Sikkim, Northeast Himalayas, India’, Quaternary International, vol. 585, pp. 134-142, viewed 4 January 2025, https://doi.org/10.1016/j.quaint.2021.01.015.
Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228-241.
Khare, S. K., McLachlan, P., Maurya, P. K., & Larsen, J. J. (2024). An optimized and hybrid gating scheme for the suppression of very low-frequency radios in transient electromagnetic systems. Geoscientific Instrumentation, Methods and Data Systems, 13(1), 27-41.
Liu, P., Wu, J., Lee, D. & Lin, Y. 2023, ‘Detecting landslide vulnerability using anisotropic microtremors and vulnerability index’, Journal of Geology, vol. 323, pp. 7-9, viewed 4 January 2025, https://doi.org/10.1016/j.geojournal.2023.07.009.
Nakamura, Y. 1989, ‘A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface’, Quarterly Report of the Railway Technical Research Institute, viewed 4 January 2025, https://www.example.com.
Priadi, R., Arsyad, M. & Susanto, A. 2024, ‘Evaluasi kerentanan seismik wilayah Kota Mamuju pasca gempa bumi 15 Agustus 2021 menggunakan data microtremor’, Jurnal Fisika Unand, vol. 13, no. 1, pp. 75-81.
Bangunan Gedung Perpustakaan Universitas Andalas Menggunakan Metode HVSR Mikrotremor
Sta. Rita, K. S., Valkaniotis, S., & Lagmay, A. M. F. (2023). Surface Rupture Kinematics of the 2020 Mw6. 6 Masbate (Philippines) Earthquake determined from Optical and Radar Data. EGUsphere, 2023, 1-37.
Sunaryo. (2017, August). Study of seismic vulnerability index (Kg) from dominant frequency (f 0) and amplification factor (A 0) by means of microzonation data: Case study on Batubesi dam of Nuha, East Luwu, South Sulawesi, Indonesia. In 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM) (pp. 78-81). IEEE.
Syahbana, A. J., Kurniawan, R., & Soebowo, E. (2018, February). Earthquake acceleration amplification based on single microtremor test. In IOP Conference Series: Earth and Environmental Science (Vol. 118, No. 1, p. 012043). IOP Publishing.
Yuniarto, A.H.P. & Kiswanto, H. n.d., ‘Analisis mikrotremor untuk evaluasi kerentanan gempa bumi pada gedung perkuliahan ITS NU Pekalongan’, Wahana Fisika, vol. 6, no. 2, pp. 151-159.
Vessia, G., Cherubini, C., Ferrini, M., & Daprile, V. (2007). Amplification factors to measure local seismic effects in urban areas. In Earthquake Geotechnical Engineering (pp. 1-12). Attuale: ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE Springer Verlag Germany: Tiergartenstrasse 17, D 69121 Heidelberg Germany: 011 49 6221 3450, EMAIL: g. braun@ springer. de, INTERNET: http://www. springer. de.
Zendagui, D., Boudghene, A. S., Bard, P. Y., & Derras, B. (2017, January). New insight in the derivation of amplification factor by taking into account soil parameters. In Sixteenth World Conference on Earthquake Engineeringn (p. 3821).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ahmad Fauzi Pohan, Yunita Putri, Nopra Algusduri, Keisyah Putri Islami, Intan Fitri, Gusti Fiona, Abdul Fadhila Deshafa, Rahmad Fajri, Yuni Erawati, Rika Amalya Rahmah, Azani Jannah, Fauzan Surya Nanda, Febriwati Zai (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.