Effect of Electrodeposition Time on Microstructure, Morphology, and Optical Properties of CIGS Films

Authors

  • Erma Surya Yuliana Universitas Negeri Malang Author
  • M. Abid Wahyudi Universitas Negeri Malang Author
  • Robi Kurniawan Universitas Negeri Malang Author
  • Nasikhudin Universitas Negeri Malang Author
  • Nandang Mufti Universitas Negeri Malang Author

DOI:

https://doi.org/10.35895/rf.v5i1.22

Keywords:

CIGS, electrodeposition, thin film, electrodeposition time

Abstract

Solar cells based on crystalline structured materials such as CIGS (Coper Indium Gallium Selenium) have great potential to replace limited fossil energy sources. Optimization of CIGS solar cells was carried out using the electrodeposition method. Electrodeposition is carried out by dipping ITO and platinum substrate electrodes into a CIGS solution with a voltage of -2V for 5-15 minutes. Samples were characterized using XRD, SEM, and UV-Vis. Based on the XRD characterization results, the length of electrodeposition time increases the intensity in the hkl 211 and 112 planes, which indicates better CIGS crystallinity. The results of SEM characterization revealed that the CIGS particle size on the substrate surface can be deposited evenly, with the particle size getting smaller, namely 0.76, 0.68, and 0.32 μm. The SEM analysis also obtained the porosity values, namely 59.28, 64.05, and 68.34. The length of time for CIGS electrodeposition does not significantly affect the absorbance of the film in the UV light range, namely 300 - 350 nm. However, the CIGS band gap becomes larger, namely 3.66, 3.71, and 3.73 eV.

References

Adhikari, A., Acosta-Najarro, D. R., Fragoso-Medina, A. J., Reyes-Vallejo, O., Cano, F. J., Olvera Amador, M. D. L. L., & Subramaniam, V. (2024). Review on the developments in copper indium gallium diselenide (CIGSe)-based thin film photovoltaic devices. Journal of Materials Science: Materials in Electronics, 35(15), 1016. https://doi.org/10.1007/s10854-024-12658-6

Chamidah, N. L. F., Mufti, N., Dewi, A. S., Permanasari, A. A., & Sunaryono, S. (2024). Effect of Temperature to Fabrication Cigs Solar Cell Using the Sputtering Method. In E3S Web of Conferences (Vol. 473, p. 01004). EDP Sciences. https://doi.org/10.1051/e3sconf/202447301004

Chukwuemeka, E. J., Osita, N. A., Odira, A. O., & Chinwe, U. (2024). Performance and Stability evaluation of low-cost inorganic methyl ammonium lead iodide (CH3NH3PbI3) Perovskite Solar cells enhanced with natural dyes from Cashew and Mango leaves. Adv. J. Chem. Sect. A, 7(1), 27-40.

Dewi, A. S., Mufti, N., Arramel, A., Arrosyid, B. H., Sunaryono, S., & Aripriharta, A. (2020, April). Synthesis and characterization of CIGS/ZnO film by spin coating method for solar cell application. In AIP Conference Proceedings (Vol. 2231, No. 1). AIP Publishing. https://doi.org/10.1063/5.0002493

El-Bassri, M., Almaggoussi, A., Abounadi, A., Boubakri, A., Koumya, Y., & Rajira, A. (2025). Effect of one-step electrodeposition time on the physical properties of tin sulfide thin films. Applied Physics A, 131(2), 124. https://doi.org/10.1007/s00339-024-08220-0

Farooq, L., Alraeesi, A., & Al Zahmi, S. (2019). A review on the electrodeposition of CIGS thin-film solar cells. IEOM Society International, 26(28), 158-185.

Ghavami, F., & Salehi, A. (2020). High-efficiency CIGS solar cell by optimization of doping concentration, thickness and energy band gap. Modern Physics Letters B, 34(04), 2050053. https://doi.org/10.1142/S0217984920500530.

Kafashan, H., & Bahrami, A. (2024). CIGS solar cells using ZrS2 as buffer layer: Numerical simulation. Optik, 298, 171594. https://doi.org/10.1016/j.ijleo.2023.171594

Kumar, C. M. S., Singh, S., Gupta, M. K., Nimdeo, Y. M., Raushan, R., Deorankar, A. V., ... & Nannaware, A. D. (2023). Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustainable Energy Technologies and Assessments, 55, 102905. https://doi.org/10.1016/j.seta.2022.102905

Lara-Lara, B., & Fernández, A. M. (2019). Growth improved of CIGS thin films by applying mechanical perturbations to the working electrode during the electrodeposition process. Superlattices and Microstructures, 128, 144-150. https://doi.org/10.1016/j.spmi.2019.01.024

Li, Y., Lin, H., Zeng, J., Chen, J., & Chen, H. (2019). Enhance short-wavelength response of CIGS solar cell by CdSe quantum disks as luminescent down-shifting material. Solar Energy, 193, 303-308. https://doi.org/10.1016/j.solener.2019.09.071.

Lin, Y. C., Lin, Z. Q., Shen, C. H., Wang, L. Q., Ha, C. T., & Peng, C. (2012). Cu (In, Ga) Se 2 films prepared by sputtering with a chalcopyrite Cu (In, Ga) Se 2 quaternary alloy and In targets. Journal of Materials Science: Materials in Electronics, 23, 493-500. https://doi.org/10.1007/s10854-011-0424-8.

Mandati, S., Dey, S. R., Joshi, S. V., & Sarada, B. V. (2019). Two-dimensional CuIn1− xGaxSe2 nano-flakes by pulse electrodeposition for photovoltaic applications. Solar Energy, 181, 396-404. https://doi.org/10.1016/j.solener.2019.02.022.

Mankoshi, M. A. K., Mustafa, F. I., & Hintaw, N. J. (2018, May). Effects of Annealing Temperature on Structural and Optical Properties of CIGS Thin Films for Using in Solar Cell Applications. In Journal of Physics: Conference Series (Vol. 1032, No. 1, p. 012019). IOP Publishing.

Mufti, N., Amrillah, T., Taufiq, A., Diantoro, M., & Nur, H. (2020). Review of CIGS-based solar cells manufacturing by structural engineering. Solar energy, 207, 1146-1157. https://doi.org/10.1016/j.solener.2020.07.065

Mufti, N., Ardilla, O. D., Yuliana, E. S., Wulandari, R. F., Taufiq, A., Setiyanto, H., ... & Septina, W. (2024). Improved performance of a SWCNT/ZnO nanostructure-integrated silicon thin-film solar cell: role of annealing temperature. Materials Advances, 5(22), 9018-9031. https://doi.org/10.1039/D4MA00726C

Mufti, N., Dewi, A. S. P., Putri, R. K., Taufiq, A., & Nur, H. (2022). Selenization process in simple spray-coated CIGS film. Ceramics International, 48(15), 21194-21200. https://doi.org/10.1016/j.ceramint.2022.04.015.

Nadhira, A. C. A., Mufti, N., Aziz, M. S., Sari, E. T., Yuliana, E. S., Abadi, M. T. H., ... & Setiyanto, H. (2024). The brief study of ZnO/PEDOT: PSS counter electrode in DSSC Based on solid electrolyte YSZ. Materials Science for Energy Technologies, 7, 309-317. https://doi.org/10.1016/j.mset.2024.04.003

Oliveri, R. L., Patella, B., Di Pisa, F., Mangione, A., Aiello, G., & Inguanta, R. (2021). Fabrication of cztse/cigs nanowire arrays by one-step electrodeposition for solar-cell application. Materials, 14(11), 2778. https://doi.org/10.3390/ma14112778

Østergaard, P. A., Duic, N., Noorollahi, Y., & Kalogirou, S. (2022). Renewable energy for sustainable development. Renewable energy, 199, 1145-1152. https://doi.org/10.1016/j.renene.2022.09.065

Park, H. K., & Jo, W. (2025). Flexible Cu (In, Ga) Se 2 photovoltaics for bending applications: advances from materials to panels. Journal of Materials Chemistry C. https://doi.org/10.1039/D4TC04422C

Rahman, A., Dargusch, P., & Wadley, D. (2021). The political economy of oil supply in Indonesia and the implications for renewable energy development. Renewable and Sustainable Energy Reviews, 144, 111027. https://doi.org/10.1016/j.rser.2021.111027

Rahmawati, H., Abadi, M. T. H., Zulaikah, S., & Mufti, N. (2022). Electrodeposition technique to fabrication CIGS using pure selenium and SeO2 as selenium source. Malaysian Journal of Fundamental and Applied Sciences, 18(3), 367-373. https://doi.org/10.11113/mjfas.v18n3.2489

Ray, M., Kabir, M. F., Raihan, M., Noushad Bhuiyan, A. B. M., Akand, T., & Mohammad, N. (2023). Performance evaluation of monocrystalline and polycrystalline-based solar cell. International Journal of Energy and Environmental Engineering, 14(4), 949-960. https://doi.org/10.1007/s40095-023-00558-0

Saeed, M., & González Peña, O. I. (2021). Mass transfer study on improved chemistry for electrodeposition of copper indium gallium selenide (Cigs) compound for photovoltaics applications. Nanomaterials, 11(5), 1222. https://doi.org/10.3390/nano11051222

Suo, J., Yang, B., Bogachuk, D., Boschloo, G., & Hagfeldt, A. (2025). The dual use of SAM molecules for efficient and stable perovskite solar cells. Advanced Energy Materials, 15(2), 2400205. https://doi.org/10.1002/aenm.202400205

Thirumoorthi, M., & Prakash, J. T. J. (2016). Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. Journal of Asian Ceramic Societies, 4(1), 124-132. https://doi.org/10.1016/j.jascer.2016.01.001.

Tobbeche, S., Kalache, S., Elbar, M., Kateb, M. N., & Serdouk, M. R. (2019). Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer. Optical and Quantum Electronics, 51, 1-13. https://doi.org/10.1007/s11082-019-2000-z.

Wu, C. H., Wu, P. W., Chen, J. H., Kao, J. Y., & Hsu, C. Y. (2018). Effect of selenization processes on CIGS solar cell performance. Journal of Nanoscience and Nanotechnology, 18(7), 5074-5081. https://doi.org/10.1166/jnn.2018.15279.

Yang, J., Du, H. W., Li, Y., Gao, M., Wan, Y. Z., Xu, F., & Ma, Z. Q. (2016). Structural defects and recombination behavior of excited carriers in Cu (In, Ga) Se2 solar cells. AIP Advances, 6(8). https://doi.org/10.1063/1.4961701.

Yuliana, E. S., Nadhira, A. C. A., Mufti, N., Diantoro, M., & Puspitasari, P. (2024). A Brief Study of the Carbon Counter Electrode for Photosensor based on DSSC. In E3S Web of Conferences (Vol. 473, p. 01005). EDP Sciences. https://doi.org/10.1051/e3sconf/202447301005

Downloads

Published

2025-01-30