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In this study, we solved the advection-diffusion sediment transport equation by taking into account the
settling velocity and employing a multiple-scale expansion to approximate the dominant advection.
We obtained an analytical solution in terms of the Green’s function. The model results showed that,
during one tidal cycle, TSS was concentrated at the surface and eventually transported to the sea. The
pattern of TSS distribution was consistent with both constant and linear time-dependent river
discharge. The simulation revealed that the concentration of TSS offshore was higher than near the
estuaries, in agreement with our observations.
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1. INTRODUCTION

The advection-diffusion equation constitutes a pivotal concept within applied mathematics,
wherein it amalgamates two pivotal phenomena intrinsic to fluid dynamics and diffusion processes,
specifically advection (convection) and diffusion (dispersion). The existence of this equation offers a
mathematical underpinning for comprehending and scrutinizing diverse phenomena across various
scientific domains, for instance, its utilization in modeling the transport of contaminants or chemical
species (Dejak et al., 1987). Furthermore, it plays a pivotal role in the design of chemical processes,
including chemical reactors and separation procedures (Wu et al., 2001), including oilspill (Eke et al.,
2021). The numerical solution of this equation presents a formidable challenge, primarily due to its
status as an open equation necessitating the specification of an advection field that satisfies the Navier-
Stokes equations. Moreover, this equation is characterized by coefficients that are contingent upon
independent variables, distinct from boundary conditions .

Finding an analytical solution to the advection-diffusion equation is a complex problem. This
complexity arises from the combination of two different processes within the equation and the
interactions between them. Nonlinearity, variable-dependent coefficients, diverse boundary conditions,
and complex geometric shapes all contribute to the challenge of seeking analytical solutions.
Analytical solutions for the advection-diffusion equation can be found only in a few exceptional cases.
Perhaps the best-known analytical solution is the Gaussian solution (Carslaw & Jaeger, 1960).

The mouth of the estuary, with sediment dominated by mud, has an important cross-shore
chenier dynamics effect (Colosimo et al., 2020, Tas et al., 2020), and sediment transport is dominated
by the advection processes generated by the flow from the river. This condition is almost found in the
tropical estuary, where the stratification is generally weak, so vertical mixing generates vertical
transport (Mei et al., 1998 , Lissa and Stacey 2011, Mubarak et al., 2016). We show the role of the
river's advection process and sediment supply in suspended sediment dynamics by constructing an
analytical model and comparing it with measurement data. The model successfully explains the extent
to which advection and river discharge affect the dispersion of suspended sediment in the estuary.
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2. METHOD

2.1 The Multiple Expansion Methods

We consider a two-dimensional advection-diffusion equation with the settling velocity taken
into account as follows,

oC  oC oC 0*C
—+u—+w, —=D
ot ox * Oz * ox?

(1)

where C is the concentration, w; is the settling velocity, and Dx is the horizontal dispersion coefficient.
We encountered a phenomenon where the advection effect is dominant, but the dispersion term cannot
be simply ignored. Both effects are crucial, and they must be considered in the model. The multiple-
scale expansion method may be used to handle this problem (Holmes 2021). Multi-scale analysis is a
technique in perturbation theory that is applicable to systems with different timescale characteristics.
For instance, consider an oscillator with a damping force where the damping effect is not noticeable on
a short timescale, but the oscillatory motion ceases on a long timescale, indicating that the damping
effect is apparent on a long timescale (Brakenhoff et al., 2020). This theory is based on the expansion
of functions and coordinates in the small parameter ¢. Due to the dispersion term being less dominant,
we write Eq. (1) as,

2
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since there are fast-time and slow-time processes, we recognize these two time scales by introducing
two time variables as fast and slow time respectively,

2
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the derivative operator becomes,
o_0 . ,°9 4)
ot o0t, 0ot
this yields,
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thus, we expand the solution as,
Clx,z,)=CO%x,z,t,,t,; ) +eCV(x, 21,1, 6 )HI (&) (6)
substituting Eq. (6) into Eq. (2), we get the equation in each order as follows,
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collecting coefficients of equal powers of & gives,

zero order,
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second order,
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by using tidal velocity, then Eq. (8) becomes,
(0) (0) (0)
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because the variable coefficient depends on y and 7y, we can use the separation variable as,

C(1,,x,8)=¢(1,,x) 29 (<) (12)
these yields,
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the solution of the second term is given by,
0 (14)
Z(O) exp{ J’ A }
. (s)
where A is a constant. Thus, Eq. (13) can be written as,
(0) (0)
9 Uyx) agt”’x) +U (x.1, )—a¢ a(t”’x) +Ag (1,,x)=0 (15)
X

assuming the solution in terms of a traveling wave f(x, t,) = f(kx — wty) = f(§), then we arrive,

[U(&)-o)=7

thus, the solution is given by,

0

0)
d¢ +A¢(O)(§)=0 (16)

where K is the integration constant. Thus, the complete solution of zero order as,

Sl it o R
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further, the first order can be written as follows,
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+u(x,t, +w =f(t ,xz (19)
where, Ot @ ) * oz f( ’ )
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2.2 Green’s Function Solution
The solution of Eq. (19) can be obtained through the Green’s function as follows,
(©)] PN ) 1 gt Tt
C t xz ” G t,, X, z;t),x' z )f(t(),x Z)dtodxdz @1

where the Green’s function satisfies,
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we see that the homogeneous part of Eq. (18) is similar to Eq. (10), so the Green’s function will be
constructed from the solution of Eq. (10). We choose the Green’s function as,

1 0 Ly
r ! 51 — ’ 1 (23)
G(to,x,z,to,x,z) —zﬁexp{j w ( .”( x = t,)_a)]dxdto }

3
with the Green’s function above, the solution Eq. (19) becomes an integral problem of Eq. (20). This
yields,

A
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where G, and G» will be determined by a letter.

The solution with the Green’s function is a problem of calculating the convolution integral.
First, substituting Eq. (18) into Eq. (20) yields,

O A o' F(t,, ) oF(t,. x)
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we note that a term containing the derivative ¢#; will result in a second-order divisor in & which will
have a small value, so that we ignore it. Substituting (25) and Eq. (23) into Eq. (21), we arrive,
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L x t'x o a ( ) ’
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first, we calculate the derivation of F (¢}, x") as follows,
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where,
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-
and we have used Leibniz’s rule integration formula - fog ) f®)dt = f(g)g'(x). The second
derivative,
82ﬁtﬁx' _R(ex p A } o A .
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substituting Eq.(32) and Eq.(30) into Eq.(28) and Eq.(29), respectively, we get the complete solution
of Eq.(27) which is explicitly dependent on the form of U(x,?). For instance U(x,?) is given by,
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where,
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we use Maclaurin’s series (= = > o(1 —x)™) and keep it up to second order. Then we get,
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by using an approximation e*~1 + x + sz + -, and solving the integration with respect to (x’, t;),
in the Green’s function Eq. (23), this leads,
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further, substituting Eq.(39), Eq. (38), Eq.(37), and Eq. (36) into Eq. (28) and Eq.(29), yields,
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The other terms contain multiplication by the squared or higher, where this term has a divisor
of ¢3, so this can be seen as a small perturbation, and it can be ignored. By using the same procedure,
we arrive,

G, (tyx ”dx'dt +jjdx'dt +jjdx'dt .. +{jjdx'dz +de'dt + [[dxdt, +...| (49)
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ur 00

Finally, we use numerical integration to solve the convolution integral above. In this study, we
limit it to first-order because second and higher-order disturbances will only give minor disturbances
to our primary system.

3. RESULTS AND DISCUSSION

To demonstrate how the calculation we discussed earlier works, we use it to solve the issue of
suspended sediment transport at the entrance of a river estuary. We take the example of an estuary
located in the equatorial region, known as the Dumai estuary on the island of Sumatra, situated around
the waters of the Singapore Strait. This estuary is characterized by the prevalence of fine and very fine
sediments, primarily transported by tides (Alkhatib et al., 2007). In this area, freshwater mixes with
saltwater, resulting in a slow river current. As a result, the suspended sediment from the upstream
basin settles at the bottom, creating shallow bathymetry. Because this is not a journal about estuaries,
we do not provide data related to processes that occur in estuaries; instead, we compare our
calculation of previous results with total sediment transport (T'SS) measurement data in the study area.

The advection processes in the estuary are governed by tidal currents. The relationship
between tidal currents and sea level elevation for one-dimensional cases fulfills the following equation
(Officer, 1978, Vongvisessomjai and Chatanantavet 2006),

%y g0 (56)

L L N (57)

where u is the zonal velocity, # is the tidal elevation, H is the water depth, and g is the gravitational
acceleration. The equations are nonlinear, so only a few simple cases have analytical solutions. We use
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an approximation, i.e., expand the tidal current velocity (z) and the surface elevation (1) in e=H/A with
A as the horizontal length scale. Because of H<<A4, the parameter &€ <<1 is a small parameter. With this
expansion, considering the Dirichlet boundary conditions, we get the elevation and tidal currents as
follows,

2
1(x,1)= Acos(kx— a)t)—wxsin 2(kx— ot ) (58)
A A e 3¢’ Ao
u(x,t):g—cos(kx—a)t)— g8 - COs 2(kx—a)t)—g“—4xsin2(kx—a)t) (59)
c c c

where c=\/(gH). Tidal data showed that the directional elevation occurred twice a day (semi-diurnal),
with the highest and lowest tides in the Dumai estuary being 1.26 and 0.47 m, respectively. Also, the
Formzhal number is about 0.239, indicating that the tidal type in Dumai estuary waters was a mixed
directional type, tending to double a day (Amiruddin et al., 2011, Rifardi et al., 2020). The tidal
current represented by Eq. (59) is depicted in Figure 1.

Tidal Current (t=24 hour)
10 T T T T T T

m/s

_8 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
m

Figure 1. Tidal current for one tidal cycle period (0-1000 is mouth of estuary to offshore).

We simulate TSS dispersion based on Eq. (5), Eq. (18), and Eq. (27). The simulation was
carried out for one tidal cycle for 24 hours, that is, there were two high tides and twice ebb. In this
simulation, we performed a deposition velocity of 0.25 m/s and a horizontal dispersion coefficient of
0.005 m/s?, TSS sources of 800 mgL"' from the river spread to the surface of the open sea. At the first
ebb, TSS with a concentration of about 60 mgL™! spreads as far as 600 m with downward dispersion as
far as 0.5 m from the surface. At the time, the first tide's highest concentration of 160 mgL™' was 900
m away. At low tide, both concentrations spread more widely, with a concentration of 180 mgL"', and
on the second tide, the concentration reaches 300 mg/L at a distance of about 1 km.

This study elucidates the behavior of TSS from rivers, illustrating that their dispersion and
concentration significantly alter throughout the tidal cycle, with pronounced horizontal and vertical
distribution patterns. These findings corroborate the earlier research conducted by Wang (2002),
which was grounded in an idealized model. In the context of the Dumai estuary, particularly within the
Mesjid estuary, a notable phenomenon of shallowing is observed, which is linked to the distribution of
TSS from the river. This trend is anticipated to culminate in the formation of a sandbank in the
forthcoming decades (Rifardi and Badrun, 2017). Furthermore, it is imperative to acknowledge the
critical role of stratification in sediment transport dynamics within estuarine environments (Wang et
al., 2015), a factor that has not been addressed in this paper and constitutes a notable limitation. Future

ISSN: 2685- 3841 (Online) 130 2025 The Physical Society of Indonesia



J. Phys. Soc. Ind. 1(2), 123-135 (2025)

Articles

Sulaiman and Mubarak

research will encompass calculations pertaining to stratification to enhance the understanding of these

processes.
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Figure 2. Suspended sediment transport into the mouth of the Dumai estuary over one tidal cycle period in the
case of constant river discharge, a) first low tide, b) first high tide, c) second low tide, and d) second high tide.
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Figure 3. Suspended sediment transport of the surface in the mouth of the Dumai estuary over a period of one
tidal cycle in the case of constant river discharge, brown is the model, and purple is the offshore data. The
correlation value is about 0.9.
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4. CONCLUSION

The dynamics of the estuary were expressed by the advection-diffusion equation, where the
boundary conditions, distances, and interactions between the freshwater mass from the river and the
saltwater mass from the sea remarkably determined the distribution process of suspended sediment
transport. We investigated this process for areas close to the mouth of the estuary. Our measurement
indicated that the advection process was clearly dominant. Although advection may be dominant, we
still need to solve the advection-diffusion equation while taking into account the diffusion term.
Furthermore, we applied an expansion multiple scale analysis, aiming to solve the advection-diffusion
equation with the advection process being more dominant than the diffusion process. We obtained an
analytical solution in terms of the Green’s function. The results showed that in one tidal cycle, TSS
was much higher on the surface, then it declined markedly after reaching the open sea. In addition, this
current work found that the pattern of TSS distribution was in accordance with the constant river
discharge and linear time-dependent river discharge. The model results obviously declared that TSS
concentrations were higher offshore than near the mouth of the estuary, and this fully complied with
the results of observation.
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APPENDIX
Solution of Eq. (18)

The solution with the Green’s function is a problem of calculating the convolution integral.
First, substituting Eq. (18) into Eq. (20), yields,

_ A , OF(t,x) 0F(t,, %) (A1)
2’ b - —d D - - , 1
(. 20) Avexp{J; (2 (}[ S u(y.b)———— o7 J

. fo % A
F(t), x)=exp {—! '([ [W] dydt, } (A2)

we note that a term containing the derivative #; will result in a second-order divisor in ¢ which will
have a small value so that we ignore it. Substituting (A1) and Eq. (23) into Eq. (21), we arrive,

where,

cw (to,z,g):%jgexp(j ﬁd[% | %gu)dg'}d;'x[é] (to,;()+éz(t0,;()] (A3)

-< -¢'
where,

first, we calculate the derivation of F(t{, x') as follow,

O, 1) _ aey M) i) té)#d"
o o !U(z',té)—w ’ "o
where, o
) 7 A ” (A7)
A )= | =———=— |dx"dt
)=l Ghriya )%

and we have used the Leibniz’s rule integration formula % f(;g @) f@®)dt = f(g)g'(x). The second

derivative,
, 2
M M) 1 A ' _to A " (A8)
aZO.z e X z[[](){l,l‘(‘;)_a)dto I')-[j_(;("t(;)_a)dl‘o

substituting A6 and A8 into A4 and AS5, respectively, we get the complete solution of (A3) which is
explicitly dependent on the form of U(y,?).

U(2t) = Acos (7,45 )- dygeos2( 7.4, )- e o'sin2 (7.1, (A9)
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where,

r " ' ! gA gZAZ j’ngza) (AlO)
(Z’tO)sz’a”o’ AIZT’ A= PR A352=T

we use Maclaurin’s series (% = Yo—o(1 —x)™) and keep it up to second order. Then we will get,
[Alcos (;(’, t(") ) - A,ecos2 (;(’, t('; ) - A382;('Sin2 (;(', t(; ) - a)}_1 ~
3Alcos(;(',t' )+2a)A cos(;(, )+4a)+ Azcos (;( )+3A 8COS2(}( t )

+2wA,ecos2 (;{', t ) +24,4,8cos (;(', t )cos2 (;(', 1 ) (A11)

+ 438705 2( )y )+ 24, Ayg cos 1ty ) 'sin2 (2t )+ 3458 'sin2 (714 )
thus we obtained,

A . o 27 (A
FL) o ir ;LD Mt R yn—a Fay)] (an)
oy' ox'

where,

2

= 34 A
F (to', X') . {j sin(t,), x)+ 24,sin(t,, x) + 4ot '+ 71[%’ + isinZ(t()’, ;{Qj +

34
2 sin2(t), x")
®

+ 24,esin2(t), )+ ——=— 24 A (szn(t L x)cos2(t, ’)(Q-I— sin’(t ')(QJ+A2(9 ( 5 +8Lsm4(t ’XQ] (A13)
0]

1.2

34
— 4,4, (icos.?(to',){)-i-%cos(to’,xyj_ ;i(oe cosZ(to',){Q}

and,
Atx) 34, 24, 242 34 A
( 0 X ) =—"—Lcos(t,, ){Q-—sm(t ’XQ cos2(t), x')- 25cos2(t0’,)(9—icos2(t0',)59
A ko ko 2kaw k
A A 1 2t o .,
+ﬁ(-eos(t,)’,)(’ —Ec0s3(ta',XQ+Ecos3(t0',)(9j— ;szw cos4(t0’,X)+§(Af +A2282)10X (A14)
1 1 34,5’
A A ——sin3(t) )+ —cos(t,), y) |- = cos2(t, y'
(4, (9ka) )\ x) o (Ox)j T (t), x)
by using an approximation e*~1 + x + x + .-+, and solving the integration with respect to (x’, ty)

in the Green’s function Eq. (23), this 1eads

ko
34,+204,)Ae
4k
further, substituting Eq (A15), (A14),(A13), and (A12) into Eq. (A4) and (AS5), yields,

f o (34, + 204, ) A o o
exp{ .([.([( )( }("t -y ) Jdt() dy }~A——cos(;(—;(,t0—to)+2a)/\;( t (A15)
2

cos2(;(—;(',to-t('))+

G, (1 2) _ [[ s, + [ e, + ([ dy'de, + ([ dyat, +...+{ [[ e, + [[ e, + [ dy'd, + [[ dyat, +} (A16)
D A B c D I 17 yig v

x
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where,
2 xl
J;J.d)(’dt' = 27A]4;]2+fa))/1 I.([COS(X'X'?% -t()')sinz ()(’,tol)cos()(’,tol)d)('dt(; (A7)
L i _ 184, (1+2a))/12 ﬁws( Vs (e, (A1)
fjdx’dt;—]2A4f2+fw)A2j'j OS( ) nz(X )COS2(X / )dxdfa (A19)
”d dt, —9A (3+2a))/12 _”cos()( x5t -t )sm 2()(1 )COSZ()( t )dx'dt (A20)
”d dt, _274 A21§+32a)f/f2 IICOS(}( x5t -t )Sm 2()(t )cosZ()(t )d)(dt (A21)
00
_Ud dt, 184 A;l:.ij}Za))Az Izcos(x—x’;to-t()')sin32(x’,t )cos2(x t )a’xdt (A22)
I dx'dt, = ]ZA 4 Ig +32a))/12 j-]cos(x-x’;to -t()')sin22(x',t()’)sin(x’,t0')dx’dt(; (A23)
i 00

”dx’dt(; 4 A24fz+fw)/12 jf]lcos(x—x';to —t(;)sin22(x’,t0')SinZ(x’,tO')dx’dt(; (A24)
00

The other terms contain multiplication by A, squared or higher, where this term has a divisor
of ¢3, so this can be seen as a small perturbation, and it can be ignored. By using the same procedure,
we arrive,

G ) = [ty [ [t e ([, [[ gy « [ e (A2
where, ar
Hd dt, —%W“.cos(x Xt -t )Szn()(t )cos()(t )d)(dt (A26)
dx'dt;:M cos(y-x'st,-t,)sin(x't,)cos* (x\t,)dy'dt, (A27)
5 ke’
Hd 'dt —M“}m(}( x5t -t )sm ()(t )cos()(t )d)(dt (A28)
)

2 X
.[jd)(’dto :6A1A (3+2w)/1 _”cos( X’;to—to)sin()(’,t )cosZ( )d)('dt (A29)
d){'dt(',=—3A’2A2(3+2w)A2Mcos )(—)(';to-t(,' sin )(’,t[,' cos )(’,t cos2 )(t d)(dt (A30)

i ka) 00
Id dt, = 6A;°’A2(i;2w)/12 j.]n.cos()(—)(';to—t(}')sinz()(',to')cos()(’,t(,')cos2()(’,t0')d)('dt(', (A31)

mur 00

Finally, we use numerical integration to solve the convolution integral above.
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