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In this study, we solved the advection-diffusion sediment transport equation by taking into account the 

settling velocity and employing a multiple-scale expansion to approximate the dominant advection. 

We obtained an analytical solution in terms of the Green’s function.  The model results showed that, 

during one tidal cycle, TSS was concentrated at the surface and eventually transported to the sea. The 

pattern of TSS distribution was consistent with both constant and linear time-dependent river 

discharge. The simulation revealed that the concentration of TSS offshore was higher than near the 

estuaries, in agreement with our observations. 
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1.  INTRODUCTION 

The advection-diffusion equation constitutes a pivotal concept within applied mathematics, 

wherein it amalgamates two pivotal phenomena intrinsic to fluid dynamics and diffusion processes, 

specifically advection (convection) and diffusion (dispersion). The existence of this equation offers a 

mathematical underpinning for comprehending and scrutinizing diverse phenomena across various 

scientific domains, for instance, its utilization in modeling the transport of contaminants or chemical 

species (Dejak et al., 1987). Furthermore, it plays a pivotal role in the design of chemical processes, 

including chemical reactors and separation procedures (Wu et al., 2001), including oilspill (Eke et al., 

2021). The numerical solution of this equation presents a formidable challenge, primarily due to its 

status as an open equation necessitating the specification of an advection field that satisfies the Navier-

Stokes equations. Moreover, this equation is characterized by coefficients that are contingent upon 

independent variables, distinct from boundary conditions . 

Finding an analytical solution to the advection-diffusion equation is a complex problem. This 

complexity arises from the combination of two different processes within the equation and the 

interactions between them. Nonlinearity, variable-dependent coefficients, diverse boundary conditions, 

and complex geometric shapes all contribute to the challenge of seeking analytical solutions. 

Analytical solutions for the advection-diffusion equation can be found only in a few exceptional cases. 

Perhaps the best-known analytical solution is the Gaussian solution (Carslaw & Jaeger, 1960). 

The mouth of the estuary, with sediment dominated by mud, has an important cross-shore 

chenier dynamics effect (Colosimo et al., 2020, Tas et al., 2020), and sediment transport is dominated 

by the advection processes generated by the flow from the river. This condition is almost found in the 

tropical estuary, where the stratification is generally weak, so vertical mixing generates vertical 

transport (Mei et al., 1998 , Lissa and Stacey 2011, Mubarak et al., 2016).  We show the role of the 

river's advection process and sediment supply in suspended sediment dynamics by constructing an 

analytical model and comparing it with measurement data. The model successfully explains the extent 

to which advection and river discharge affect the dispersion of suspended sediment in the estuary. 
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2. METHOD 

2.1 The Multiple Expansion Methods 

We consider a two-dimensional advection-diffusion equation with the settling velocity taken 

into account as follows, 

 

              (1) 

 

where C is the concentration, ws is the settling velocity, and Dx is the horizontal dispersion coefficient. 

We encountered a phenomenon where the advection effect is dominant, but the dispersion term cannot 

be simply ignored. Both effects are crucial, and they must be considered in the model. The multiple-

scale expansion method may be used to handle this problem (Holmes 2021). Multi-scale analysis is a 

technique in perturbation theory that is applicable to systems with different timescale characteristics. 

For instance, consider an oscillator with a damping force where the damping effect is not noticeable on 

a short timescale, but the oscillatory motion ceases on a long timescale, indicating that the damping 

effect is apparent on a long timescale (Brakenhoff et al., 2020). This theory is based on the expansion 

of functions and coordinates in the small parameter ε. Due to the dispersion term being less dominant, 

we write Eq. (1) as, 

 

              (2) 

 

since there are fast-time and slow-time processes, we recognize these two time scales by introducing 

two time variables as fast and slow time respectively, 

 

   (3) 

the derivative operator becomes, 
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this yields, 
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thus, we expand the solution as, 
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substituting Eq. (6) into Eq. (2), we get the equation in each order as follows, 
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   (8) 

 

first order, 

 

           (9) 

 

second order, 

 

           (10) 

 

by using tidal velocity, then Eq. (8) becomes, 

 

           (11) 

 

because the variable coefficient depends on χ and t0, we can use the separation variable as, 

 

           (12) 

these yields, 

 

           (13) 

 

the solution of the second term is given by, 

 

           (14) 

 

 

where Λ is a constant. Thus, Eq. (13) can be written as, 

  

           (15) 

 

assuming the solution in terms of a traveling wave 𝑓(𝑥, 𝑡0) = 𝑓(𝑘𝑥 − 𝜔𝑡0) = 𝑓(𝜉), then we arrive, 

 

           (16) 

 

thus, the solution is given by, 
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where K is the integration constant.  Thus, the complete solution of zero order as, 
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further, the first order can be written as follows, 

 

           (19) 

where, 

 

           (20) 

 

 

2.2 Green’s Function Solution 

The solution of Eq. (19) can be obtained through the Green’s function as follows, 
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where the Green’s function satisfies, 
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we see that the homogeneous part of Eq. (18) is similar to Eq. (10), so the Green’s function will be 

constructed from the solution of Eq. (10). We choose the Green’s function as, 
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with the Green’s function above, the solution Eq. (19) becomes an integral problem of Eq. (20). This 

yields, 
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where G1 and G2 will be determined by a letter.  

The solution with the Green’s function is a problem of calculating the convolution integral. 

First, substituting Eq. (18) into Eq. (20) yields, 
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where, 
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we note that a term containing the derivative t1 will result in a second-order divisor in ε, which will 

have a small value, so that we ignore it. Substituting (25) and Eq. (23) into Eq. (21), we arrive, 
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(29) 

 

first, we calculate the derivation of 𝐹̂(𝑡0
′ , 𝑥′) as follows, 
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substituting Eq.(32) and Eq.(30) into Eq.(28) and Eq.(29), respectively, we get the complete solution 
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The other terms contain multiplication by the squared or higher, where this term has a divisor 

of c3, so this can be seen as a small perturbation, and it can be ignored. By using the same procedure, 

we arrive, 

 

 (49) 

 

where, 

 (50) 

 

 

 (51) 

 

 

(52) 
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Finally, we use numerical integration to solve the convolution integral above. In this study, we 

limit it to first-order because second and higher-order disturbances will only give minor disturbances 

to our primary system. 

3. RESULTS AND DISCUSSION 
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basin settles at the bottom, creating shallow bathymetry. Because this is not a journal about estuaries, 
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calculation of previous results with total sediment transport (TSS) measurement data in the study area. 

The advection processes in the estuary are governed by tidal currents. The relationship 

between tidal currents and sea level elevation for one-dimensional cases fulfills the following equation 

(Officer, 1978, Vongvisessomjai and Chatanantavet 2006), 
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an approximation, i.e., expand the tidal current velocity (u) and the surface elevation (η) in ε=H/λ with 

λ as the horizontal length scale. Because of H<<λ, the parameter ε <<1 is a small parameter. With this 

expansion, considering the Dirichlet boundary conditions, we get the elevation and tidal currents as 

follows,  

 

             (58) 

 

             (59) 

 

where c=√(gH).  Tidal data showed that the directional elevation occurred twice a day (semi-diurnal), 

with the highest and lowest tides in the Dumai estuary being 1.26 and 0.47 m, respectively. Also, the 

Formzhal number is about 0.239, indicating that the tidal type in Dumai estuary waters was a mixed 

directional type, tending to double a day (Amiruddin et al., 2011, Rifardi et al., 2020).  The tidal 

current represented by Eq. (59) is depicted in Figure 1.  

 

Figure 1. Tidal current for one tidal cycle period (0-1000 is mouth of estuary to offshore). 

We simulate TSS dispersion based on Eq. (5), Eq. (18), and  Eq. (27).  The simulation was 

carried out for one tidal cycle for 24 hours, that is, there were two high tides and twice ebb. In this 

simulation, we performed a deposition velocity of 0.25 m/s and a horizontal dispersion coefficient of 

0.005 m/s2, TSS sources of 800 mgL-1 from the river spread to the surface of the open sea.  At the first 

ebb, TSS with a concentration of about 60 mgL-1 spreads as far as 600 m with downward dispersion as 

far as 0.5 m from the surface. At the time, the first tide's highest concentration of 160 mgL-1 was 900 

m away. At low tide, both concentrations spread more widely, with a concentration of 180 mgL-1, and 

on the second tide, the concentration reaches 300 mg/L at a distance of about 1 km.  

This study elucidates the behavior of TSS from rivers, illustrating that their dispersion and 

concentration significantly alter throughout the tidal cycle, with pronounced horizontal and vertical 

distribution patterns. These findings corroborate the earlier research conducted by Wang (2002), 

which was grounded in an idealized model. In the context of the Dumai estuary, particularly within the 

Mesjid estuary, a notable phenomenon of shallowing is observed, which is linked to the distribution of 

TSS from the river. This trend is anticipated to culminate in the formation of a sandbank in the 

forthcoming decades (Rifardi and Badrun, 2017). Furthermore, it is imperative to acknowledge the 

critical role of stratification in sediment transport dynamics within estuarine environments (Wang et 

al., 2015), a factor that has not been addressed in this paper and constitutes a notable limitation. Future 
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research will  encompass calculations pertaining to stratification to enhance the understanding of these 

processes. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 2. Suspended sediment transport into the mouth of the Dumai estuary over one tidal cycle period in the 

case of constant river discharge, a) first low tide, b) first high tide, c) second low tide, and d) second high tide. 

 

Figure 3. Suspended sediment transport of the surface in the mouth of the Dumai estuary over a period of one 

tidal cycle in the case of constant river discharge, brown is the model, and purple is the offshore data. The 

correlation value is about 0.9. 
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4. CONCLUSION 

The dynamics of the estuary were expressed by the advection-diffusion equation, where the 

boundary conditions, distances, and interactions between the freshwater mass from the river and the 

saltwater mass from the sea remarkably determined the distribution process of suspended sediment 

transport. We investigated this process for areas close to the mouth of the estuary.  Our measurement 

indicated that the advection process was clearly dominant. Although advection may be dominant, we 

still need to solve the advection-diffusion equation while taking into account the diffusion term. 

Furthermore, we applied an expansion multiple scale analysis, aiming to solve the advection-diffusion 

equation with the advection process being more dominant than the diffusion process. We obtained an 

analytical solution in terms of the Green’s function. The results showed that in one tidal cycle, TSS 

was much higher on the surface, then it declined markedly after reaching the open sea. In addition, this 

current work found that the pattern of TSS distribution was in accordance with the constant river 

discharge and linear time-dependent river discharge. The model results obviously declared that TSS 

concentrations were higher offshore than near the mouth of the estuary, and this fully complied with 

the results of observation. 
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APPENDIX 

Solution of Eq. (18)  

The solution with the Green’s function is a problem of calculating the convolution integral. 

First, substituting Eq. (18) into Eq. (20), yields, 

 

           (A1) 

 

 

where, 

           (A2) 

 

 

we note that a term containing the derivative t1 will result in a second-order divisor in ε which will 

have a small value so that we ignore it. Substituting (A1) and Eq. (23) into Eq. (21), we arrive, 
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first, we calculate the derivation of 𝐹̂(𝑡0
′ , 𝜒′) as follow, 
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substituting A6 and A8 into A4 and A5, respectively, we get the complete solution of (A3) which is 
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where, 

                     (A10) 

 

we use Maclaurin’s series (
1

𝑥
= ∑ (1 − 𝑥)𝑛∞

𝑛=0 )  and keep it up to second order. Then we will get, 
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where, 
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The other terms contain multiplication by A2 squared or higher, where this term has a divisor 

of c3, so this can be seen as a small perturbation, and it can be ignored. By using the same procedure, 

we arrive, 
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Finally, we use numerical integration to solve the convolution integral above. 
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