Evaluasi Prediksi Higher Heating Value (HHV) Biomassa Berdasarkan Analisis Proksimat

Made Dirgantara, Karelius, Marselin Devi Ariyanti, Sry Ayu K. Tamba

Sari


Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.

Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat 

Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass.

Key words: fuel, biomass, higher heating value, error value, proximate 

Kata Kunci


bahan bakar, biomassa, higher heating value, nilai error, proksimat

Teks Lengkap:

PDF

Referensi


E. Akkaya, “ANFIS based prediction model for biomass heating value using proximate analysis components,” Fuel 180 (2016) 687–693, doi: 10.1016/j.fuel.2016.04. 112.

J. Blunden dan D. S. Arndt, “State of the Climate in 2018,” Bull. Am. Meteorol. Soc. 100 (2019) S1-S306, doi: 10.1175/2019BAMSStateoftheClimate.1.

A. Özyuğuran, S. Yaman, dan S. Küçükbayrak, “Prediction of calorific value of biomass based on elemental analysis,” Int. Adv. Res. Eng. J. 2 (2018) 2.

N. Yaacob, N. A. Rahman, S. Matali, S. S. Idris, dan A. B. Alias, “An overview of oil palm biomass torrefaction: Effects of temperature and residence time,” IOP Conf. Ser. Earth Environ. Sci., 36 (2016) 0120381, doi: 10.1088/1755-1315/36/1/012038

I. Estiati, F. B. Freire, J. T. Freire, R. Aguado, dan M. Olazar, “Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass,” FUEL 180 (2016) 377–383, doi: 10.1016/j.fuel.2016.04.051.

R. Alamsyah, N. C. Siregar, dan F. Hasanah, “Peningkatan Nilai Kalor Pellet Biomassa Cocopeat sebagai Bahan Bakar Terbarukan dengan Aplikasi Torefaksi,” War. Ind. Has. Pertan. 33 (2018) 17–23, doi: 10.32765/warta ihp.v33i01. 3813.

A. Ozyuguran, A. Akturk, dan S. Yaman, “Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass,” Fuel 214 (2018) 640–646, doi: 10.1016/j.fuel.2017.10.082.

M. Asadullah, A. M. Adi, N. Suhada, N. H. Malek, M. I. Saringat, dan A. Azdarpour, “Optimization of palm kernel shell torrefaction to produce energy densified bio-coal,” Energy Convers. Manag. 88 (2014) 1086–1093, doi: 10. 1016/j.enconman.2014.04.071.

A. Dashti, A. S. Noushabadi, M. Raji, A. Razmi, S. Ceylan, dan A. H. Mohammadi, “Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation,” Fuel 257 (2019) 115931, doi: 10.1016/j.fuel.2019.115931.

J. Xing, K. Luo, H. Wang, Z. Gao, dan J. Fan, “A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches,” Energy 188 (2019) 116077, doi: 10. 1016/j.energy.2019.116077.

M. Dirgantara, Karelius, B. T. Cahyana, K. G. Suastika, dan A. R. Akbar, “Effect of Temperature and Residence Time Torrefaction Palm Kernel Shell On The Calorific Value and Energy Yield,” J. Phys. Conf. Ser. 1428 (2020) 012010, doi: 10.1088/1742-6596/1428/1/012010.

D. R. Nhuchhen dan M. T. Afzal, “HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses,” Bioengineering 4 (2017) 1-15, doi: 10.3390/bioengineering4010007.

J. Xing, K. Luo, H. Wang, Z. Gao, dan J. Fan, “A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches,” Energy 188 (2019) 116077, doi: 10.1016/j.energy.2019.116077.

A. Kwaghger, L. A. Enyejoh, dan H. A. Iortyer, “The development of equations for estimating high heating values from proximate and ultimate analysis for some selected indigenous fuel woods,” Eur. J. Eng. Technol 5 (2017) 21–33.

D. R. Nhuchhen dan P. Abdul Salam, “Estimation of higher heating value of biomass from proximate analysis: A new approach,” Fuel 99 (2012) 55–63, doi: 10.1016/j.fuel. 2012.04.015.

A. Özyuğuran dan S. Yaman, “Prediction of Calorific Value of Biomass from Proximate Analysis,” Energy Procedia 107 (2017) 130–136, doi: 10.1016/j.egypro.2016.12.149.

G. Pahla, T. A. Mamvura, F. Ntuli, dan E. Muzenda, “Energy densification of animal waste lignocellulose biomass and raw biomass,” South Afr. J. Chem. Eng. 24, (2017) 168–175, doi: 10.1016/j.sajce.2017.10.004.

K. N. Dhanavath, S. Bankupalli, S. K. Bhargava, dan R. Parthasarathy, “An experimental study to investigate the effect of torrefaction temperature on the kinetics of gas generation,” J. Environ. Chem. Eng. 6 (2018) 3332–3341, doi: 10.1016/j.jece.2018.05.016.

T. A. Mamvura, G. Pahla, dan E. Muzenda, “Torrefaction of waste biomass for application in energy production in South Africa,” South Afr. J. Chem. Eng. 25 (2018) 1–12, doi: 10.1016/j.sajce.2017.11.003.

N. Asma dkk., “ScienceDirect ScienceDirect Torrefaction of Municipal Solid Waste in Malaysia Assessing the feasibility of using the heat demand-outdoor temperature function for a long-term district heat demand forecast,” Energy Procedia 138 (2017) 313–31, doi: 10.1016/j.egypro.2017.10.106.

D. R. Nhuchhen dan P. Abdul Salam, “Estimation of higher heating value of biomass from proximate analysis: A new approach,” Fuel 99 (2012) 55–63, doi: 10.1016/j.fuel.2012 .04.015.

S. Kieseler, Y. Neubauer, dan N. Zobel, “Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids,” Energy Fuels 27 (2013) 908–918, doi: 10.1021/ef301752d.

Q. V. Bach, H. R. Gye, D. Song, dan C. J. Lee, “High quality product gas from biomass steam gasification combined with torrefaction and carbon dioxide capture processes,” Int. J. Hydrog. Energy 44 (2019) 14387–14394, doi: 10.1016/j.ijhydene.2018.11.237.

F. Razil, A. Abdul, S. Saleh, N. Asma, dan F. Abdul,

"Estimation of Higher Heating Value of Torrefied Palm Oil Wastes from Proximate Analysis," Energy Procedia 138 (2017) 307–312, doi: 10.1016/j.egypro.2017.10.102.

Y. Uemura, S. Saadon, N. Osman, N. Mansor, dan K. Tanoue, “Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide,” Fuel 144 (2015) 171–179, doi: 10.1016/j.fuel.2014.12.050.

C. Zhang, C. Wang, G. Cao, W. H. Chen, dan S. H. Ho, “Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction,” Fuel 246 (2019) 375–385, doi: 10.1016/ j.fuel.2019.02.139.




DOI: https://doi.org/10.35895/rf.v4i1.166

Refbacks

  • Saat ini tidak ada refbacks.