Solusi Persamaan Schrödinger Berbasis Panjang Minimal untuk Potensial Coulomb Termodifikasi

A. Suparmi, C. Cari, Ina Nurhidayati

Sari


Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi.

 

Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi

 

Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter.

 

Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


Kata Kunci


persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi

Teks Lengkap:

pdf

Referensi


PUSTAKA

Alemgadmi, K., Suparmi., Cari., Deta, U., Approximation solution of Schrödinger equation for Q-deformed Rosen Morse using Supersymetry Quantum mechanics (SUSY QM). 2015. AIP Conference Proceedings. 1677, 030004

D. A. Nugraha, A. Suparmi, C. Cari, and B.N. Pratiwi, “Asymptotic Iteration Method for analytical solution of Klein Gordon equation for Trigonometric Pӧschl-Teller potential in D-dimensions,” J. Phys. Conf. Ser., Vol. 1, hal. 42-48, 2017.

M. Alimohammadi and H. Hassanabadi, ”Alternative solution of the gamma-rigid Bohr Hamiltonian in minimal length formalism,” Nuclear Physics A, , 439-449, 2017.

Budaca, R. Harmonic oscillator potential with a sextic anharmonicity in the prolate collective geometrical model.. Physics Letters B. Vol. 739, 56-61, 2014

L. J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A 10 (1995) 145 [arXiv:gr-qc/9403008].

M. Maggiore, A Generalized Uncertainty Principle in Quantum Gravity, Phys. Lett. B 304 (1993) 65 [arXiv:hep-th/9301067].

M. Maggiore, Quantum Groups, Gravity, and the Generalized Uncertainty Principle, Phys. Rev. D 49 (1994) 5182 [arXiv:hep-th/9305163].

M. Maggiore, The algebraic structure of the generalized uncertainty principle, Phys. Lett. B 319 (1993) 83 [arXiv:hep-th/9309034].

F. Scardigli, Generalized Uncertainty Principle in Quantum Gravity from Micro-Black Hole Gedanken Experiment, Phys. Lett. B 452 (1999) 39 [arXiv:hep-th/9904025].

S. Hossenfelder et al., Signatures in the Planck Regime, Phys. Lett. B 575 (2003) 85 [arXiv:hep-th/0305262].

Deta, U., Alemgadmi, K., Suparmi., Cari., Husein, A., Yuliani, H., Luqman, H., Supriyanto., Energy Spectra and Wave Function of Trigonometric Rosen Morse Potential as an effective Quantum Chromodynamics Potential in D-Dimensions. 2014. AIP Conference Proceedings. 1615, 121127

C. Bambi, F. R. Urban, Natural extension of the Generalised Uncertainty Principle, Class. Quantum Grav. 25 (2008) 095006 [arXiv:0709.1965].

K. Nozari, Some aspects of Planck scale quantum optics, Phys. Lett. B 629 (2005) 41.

K. Nozari, T. Azizi, Some aspects of gravitational quantum mechanics, Gen. Relativ. Gravit. 38 (2006) 735.

P. Pedram, A class of GUP solutions in deformed quantum mechanics, Int. J. Mod. Phys. D 19(2010) 2003.

Kempf, G. Mangano, and R. B. Mann, Hilbert Space Representation of the Minimal Length Uncertainty Relation, Phys. Rev. D 52 (1995) 1108 [arXiv:hepth/9412167].

Kempf, Nonpointlike Particles in Harmonic Oscillators, J. Phys. A 30 (1997) 2093,[arXiv:hep-th/9604045].

F. Brau, Minimal Length Uncertainty Relation and Hydrogen Atom, J. Phys. A 32 (1999) 7691 [arXiv:quant-ph/9905033].

Nurhidayati, I., Suparmi, A., Cari, C., Analytical Solution of Schrödinger Equation in minimal length formalism for trigonometric potential using hypergeometry method. 2017. Journal of Physics: Conference series vol. 997, 012016. [https://doi.org/10.1088/1742-6596/997/1/012016] .




DOI: https://doi.org/10.35895/rf.v2i2.117

Refbacks

  • Saat ini tidak ada refbacks.


Terindeks:

  

 

Bekerjasama dengan: