Potential and Mechanism of Plants as Radioprotection Agents in Cancer Therapy: Review

Authors

  • Wahyu Aqni Brawijaya University Author

DOI:

https://doi.org/10.35895/rf.v5i2.33

Keywords:

Radioprotection; Antioxidants; Phytochemicals; Cancer therapy; Oxidative stress

Abstract

Radiotherapy is a widely used treatment for cancer, yet it can cause harmful side effects due to oxidative stress and DNA damage in healthy tissues. This systematic literature review explores the potential of medical plants as natural radioprotective agents. Twenty plant species were identified, and their bioactive compounds such as flavonoids, polyphenols, saponins, and tannins were shown to exhibit antioxidant, anti-inflammatory, and DNA repair properties. The predominant mechanism of protection involves free radical scavenging. However, non-selective action and the possibility of protecting cancer cells remain major challenges. While in vivo and in vitro studies show promising results, further research is necessary to develop clinically applicable formulations. Natural plant-based agents offer a safer alternative to synthetic radioprotectors, potentially enhancing patient outcomes in radiotherapy.

References

Baatout, S. (2023). Radiobiology Textbook (S. Baatout (ed.)).

Baskaware, S. V, Deodhar, M. A., & Sharma, N. K. (2024). Modulatory effect of the fruit rind extract of Garcinia indica Choisy against gamma radiation induced damage in human peripheral blood lymphocytes : a preliminary study. International Journal of Radiation Biology, 100(10), 1438–1452. https://doi.org/10.1080/09553002.2024.2381494

Çakır, T., Yıldızhan, K., Huyut, Z., Ahmet, U., & Arıhan, O. (2020). Radioprotective profile of Urtica dioica L . seed extract on oxidative DNA-damage in liver tissue and whole blood of radiation ‑ administered rats. Brazilian Journal of Pharmaceutical Sciences, 56(e18382), 1–9.

Checker, R., Pal, D., Patwardhan, R. S., Basu, B., Sharma, D., & Sandur, S. K. (2019). Modulation of Caspase-3 activity using a redox active vitamin K3 analogue , plumbagin , as a novel strategy for radioprotection. Free Radical Biology and Medicine, 143(September), 560–572. https://doi.org/10.1016/j.freeradbiomed.2019.09.001

Dadupanthi, P. (2019). PROTECTIVE EFFECTS OF ALOE VERA AGAINST RADIATION INDUCED BIOCHEMICAL DISORDERS IN LIVER OF SWISS ALBINO MICE. International Journal of Pharmaceutical Sciences and Research, 10(3), 1275–1280. https://doi.org/10.13040/IJPSR.0975-8232.10(3).1275-80

Devi, M. M., & Sharma, G. J. (2022). Elite Zingiber extracts as potential free radical scavengers and radioprotectors. International Journal of Food Properties, 25(1), 1890–1906. https://doi.org/10.1080/10942912.2022.2111440

Feng, L., Shi, P., Zhao, L., Shang, M., Han, Y., Han, N., Liu, Z., Li, S., Zhai, J., & Yin, J. (2024). International Journal of Biological Macromolecules Structural characterization of polysaccharides from Panax ginseng C . A . Meyer root and their triggered potential immunoregulatory and radioprotective activities. International Journal of Biological Macromolecules, 280(P3), 135993. https://doi.org/10.1016/j.ijbiomac.2024.135993

Issinger, O., & Guerra, B. (2021). Phytochemicals in cancer and their effect on the PI3K / AKT-mediated cellular signalling. Biomedicine & Pharmacotherapy, 139(May), 111650. https://doi.org/10.1016/j.biopha.2021.111650

Kim, J. O., Jung, D. Y., & Min, B. I. (2023). Avocado peel extract : The effect of radiation-induced on neuroanatomical and behavioral changes in rats. Journal of Chemical Neuroanatomy, 129(January), 1–8. https://doi.org/10.1016/j.jchemneu.2023.102240

Malyarenko, O. S., Usoltseva, R. V, Zvyagintseva, T. N., & Ermakova, S. P. (2019). Laminaran from brown alga Dictyota dichotoma and its sulfated derivative as radioprotectors and radiosensitizers in melanoma therapy. Carbohydrate Polymers, 206(June 2018), 539–547. https://doi.org/10.1016/j.carbpol.2018.11.008

Martinez, V. L., Gloria, O., Cervantes, L., Cantero, F., & Favant, J. L. (2020). Preclinical Study of Genuine Essiac Formula : A Cancer Treatment Eight- herbs ’ Tea Minimizes DNA Insult of X-rays. Clinical Cancer Investigation Journal, 9(4), 126–136. https://doi.org/10.4103/ccij.ccij

Masoud, M. M., El-Laithy, N. A., Youness, E. R., Ahmed, N. M., Omara, E. A., Mahdy, E. M. E., & Shousha, W. G. (2023). Amifostine Silica Nanoparticles Characterization and Effect on Neuronal Damage in Cisplatin Treated Rats. Egyptian Journal of Chemistry, 66(10), 497–508. https://doi.org/10.21608/EJCHEM.2023.187849.7465

Mohammed, N., Balbola, G. A., Abdel, N., Mohamed, G., Ahmed, A., Mohammed, A., Mously, E. A., Felemban, D., Elsayed, A., & Hassan, S. (2024). The effectiveness of Moringa oleifera in the preservation of periodontium after radiation therapy : An experimental animal study. Heliyon, 10(6), e27495. https://doi.org/10.1016/j.heliyon.2024.e27495

Mohan, S., & Gupta, D. (2019). Role of Nrf2-antioxidant in radioprotection by root extract of Inula racemosa. International Journal of Radiation Biology, 95(8), 1122–1134. https://doi.org/10.1080/09553002.2019.1607607

Nurmansya, V. A., & Miskiyah, Z. (2021). RADIOTERAPI KANKER CERVIX DENGAN LINEAR ACCELERATOR ( LINAC ). Jurnal Biosains Pascasarjana, 23(02), 75–86. https://doi.org/10.20473/jbp.v5i2.2021.24-35

Prasad, S. K., Bose, A., Bhattacharjee, A., Banerjee, O., Singh, S., Mukherjee, S., & Pal, S. (2019). Radioprotective effect of ethanolic extract of Alocasia indica on γ-irradiation-induced reproductive alterations in ovary and uterus. International Journal of Radiation Biology, 95(11), 1529–1542. https://doi.org/10.1080/09553002.2019.1642545

Ritwiz, B. S., Ganesh, N., & Kori, M. L. (2019). Cytoprotection Alternatives for Cancer Treatment : In - vitro Evaluation of Alpinia Zerumbet as a Radioprotective Agent. Journal of Drug Delivery & Therapeutics, 9(4), 171–176.

Roshankhah, S., Zahabi, S. S., Gholami, M. R., Abdolmaleki, A., & Salahshoor, M. R. (2021). Radioprotective Effects of Allium jesdianum Extract on Reduction of Pancrease Damages Following γ -Radiation through Down-regulation of Apoptotic Genes , Antioxidants Regulation , and Suppression of Inflammatory Markers. Jundishapur J Nat Pharm Prod, 16(3), 10–19. https://doi.org/10.5812/jjnpp.103997.Research

Sadeeshkumar, V., Duraikannu, A., Aishwarya, T., Jayaram, P., Ravichandran, S., & Ganeshamurthy, R. (2019). Radioprotective efficacy of dieckol against gamma radiation-induced cellular damage in hepatocyte cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392, 1031–1041.

Singh, V. K., & Seed, T. M. (2020). BIO 300 : a promising radiation countermeasure under advanced development for acute radiation syndrome and the delayed effects of acute radiation exposure. Expert Opinion on Investigational Drugs, 29(5), 429–441. https://doi.org/10.1080/13543784.2020.1757648

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020 : GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicans, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Szejk-arendt, M., Czubak-prowizor, K., Macieja, A., Poplawski, T., Klaudia, A., Pawlaczyk-graja, I., Gancarz, R., & Malgorzata, H. (2020). International Journal of Biological Macromolecules Polyphenolic-polysaccharide conjugates from medicinal plants of Rosaceae / Asteraceae family protect human lymphocytes but not myeloid leukemia K562 cells against radiation-induced death. International Journal of Biological Macromolecules, 156, 1445–1454. https://doi.org/10.1016/j.ijbiomac.2019.11.186

Targhi, R. G., Banaei, A., & Saba, V. (2019). Radioprotective effect of grape seed extract against gamma irradiation in mouse bone marrow cells. Journal of Cancer Research and Therapeutics, 15(3), 1–5. https://doi.org/10.4103/jcrt.JCRT

Thimmaiah, N. M., Joshi, C. G., Patil, R. K., Khandagale, A. S., Somashekarappa, H. M., Ananda, D., & Manjunath, H. M. (2019). Mitigation of Radiation ‑ Induced Oxidative Stress by Methanolic Extract of Tragia involucrata in Swiss Albino Mice. Pharmacognosy Research, 11(3), 236–243. https://doi.org/10.4103/pr.pr

Turcov, D., Zbranca-toporas, A., & Suteu, D. (2023). Bioactive Compounds for Combating Oxidative Stress in Dermatology. International Journal of Molecular Sciences, 24(17517), 1–17.

Wardhani, C. T., Gayatri, D., & Nuraini, T. (2022). Perbandingan Skoring Kualitas Hidup Pasien Kanker dengan Menggunakan EORTC QLQ‑C30 dan FACT‑G: Literatur Review. Jurnal Kesehatan Vokasional, 7(1), 61–69.

Wu, B., Sodji, Q. H., & Oyelere, A. K. (2022). Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers, 14(552), 1–37.

Zhang, Y., Zhang, L., Zhou, H., Li, Y., Wei, K., Li, C., Zhou, T., Wang, J.-F., Wei, W.-J., Hua, J.-R., He, Y., Hong, T., & Liu, Y.-Q. (2020). Astragalus polysaccharide inhibits radiation-induced bystander effects by regulating apoptosis in Bone Mesenchymal Stem Cells ( BMSCs ). Cell Cycle, 19(22), 3195–3207. https://doi.org/10.1080/15384101.2020.1838793

Downloads

Published

2025-08-09