

# STEM Integration In Physics Education and Its Influence on Cognitive Skills: A Systematic-Literature Review (2014-2025)

**Tharissa Anita Putri, Kharisma Dwi Cahyani, Agus Suyatna\*, Abdurrahman**

Departemen of Science Education, Postgraduate Program, Universitas Lampung, Lampung, Indonesia

\* agus.suyatna@fkip.unila.ac.id

## ARTICLE INFO

**Article history:**

Received 26 December 2025

Revised 08 January 2026

Accepted 10 January 2026

Available online 15 January 2026



This is an open access article under the [CC BY-NC 4.0](#) license. Copyright © 2025 by Author. Published by Physical Society Indonesia

## ABSTRACT

*Integration of Science, Technology, Engineering, and Mathematics (STEM) in physics education has become a strategic approach to enhancing students' cognitive skills in response to the demands of the 21st century. This study aims to present a systematic literature review of 20 scientific articles that examine the implementation of STEM-based learning in physics education and its impact on students' cognitive skills. The method employed is a systematic literature review, involving stages of identification, selection, and thematic analysis of articles published between 2015 and 2024. The findings indicate that STEM integration consistently has a positive effect on students' cognitive skills, particularly in critical thinking, problem-solving, conceptual understanding, and higher-order thinking skills (HOTS). Furthermore, the STEM approach promotes learning that is more contextual, collaborative, and oriented toward real-world problem solving. Therefore, the integration of STEM in physics education is recommended as an effective instructional approach to improving the quality of students' cognitive learning outcomes.*

**Keywords:** STEM; physics education; cognitive skills

## A B S T R A K

*Integrasi Science, Technology, Engineering, and Mathematics (STEM) dalam pendidikan fisika menjadi pendekatan strategis untuk meningkatkan keterampilan kognitif peserta didik dalam menghadapi tuntutan abad ke-21. Penelitian ini bertujuan menyajikan tinjauan pustaka sistematis terhadap 20 artikel ilmiah yang membahas penerapan pembelajaran berbasis STEM pada pendidikan fisika serta dampaknya terhadap keterampilan kognitif siswa. Metode yang digunakan adalah systematic literature review dengan tahapan identifikasi, seleksi, dan analisis tematik terhadap artikel yang dipublikasikan pada periode 2015–2024. Hasil kajian menunjukkan bahwa integrasi STEM secara konsisten memberikan pengaruh positif terhadap keterampilan kognitif siswa, khususnya pada kemampuan berpikir kritis, pemecahan masalah, pemahaman konsep, dan keterampilan berpikir tingkat tinggi (HOTS). Selain itu, pendekatan STEM juga mendorong pembelajaran yang lebih kontekstual, kolaboratif, dan berorientasi pada pemecahan masalah nyata. Dengan demikian, integrasi STEM dalam pendidikan fisika direkomendasikan sebagai pendekatan pembelajaran yang efektif untuk meningkatkan kualitas hasil belajar kognitif siswa.*

**Kata Kunci:** STEM; physics education; cognitive skills

## 1. INTRODUCTION

Development knowledge knowledge and technology in the 21st century have bring implications significant to system education, including education physics (Baran et al., 2016)(Khalil et al., 2023). Global challenges such as Industrial Revolution 4.0, Society 5.0, and need will source Power adaptive, critical and innovative human beings demand learning that is not only mastery - oriented draft (Pendidikan et al., 2012)(Narul, 2024), but also on development skills cognitive level tall (Muyassarah et al., 2019)(Alaini et al., 2022)(Loof et al., 2022). Skills the covers ability think critical, solving problems, analysis, synthesis, and evaluation which are collective known as Higher Order Thinking Skills (HOTS) (Kusuma et al., 2017).

Physics education own role strategic in build skills cognitive. Because its characteristics emphasize reasoning scientific, modeling mathematical, as well as implementation draft in phenomenon nature and technology (Loof et al., 2022). However, various study show that learning physics conventional (Aini, 2017) which is still teacher-centered tend emphasize memorization formula and solution routine matters, so that less than optimal in develop skills cognitive students. Conditions This push the need approach learning innovative and capable integrate draft physics with context real and cross discipline (Sunaryo et al., 2022).

One of many approaches studied and implemented in One decade final is integration of Science, Technology, Engineering, and Mathematics (STEM) (Mart & Naranjo-correa, 2022). The STEM approach emphasizes integration between scientific concepts, utilization technology, engineering processes, and modeling mathematical in finish problem authentic (Nagdi et al., 2018). In the context education physics, STEM integration allows student For understand draft physics in a way holistic through activity based projects, experiments, and solutions problem contextual (Fadil, 2004).

A number of study report that learning physics STEM- based capable increase understanding draft (Muyassarah et al., 2019)(Narul, 2024), skills think critical (Series, n.d.), and ability solution problem student (Sulistiani et al., 2024)(Series, 2019)(Saputri et al., 2025). In addition, STEM also encourages involvement active student in the learning process, improve motivation Study (Fadil, 2004), as well as grow skills collaboration and communication (Rahmayani & Asrizal, 2023)(Nilyani & Ratnawulan, 2023). Although Thus, the findings the Still spread in various publication with diverse focus and context.

This study is review literature systematic (SLR). Many have already do a number of studies about the use of STEM in learning physics For increase skills cognitive students ; however, application, methodology, population targets, and reported results vary widely Consequently, SLR is necessary For identify patterns and gaps research, as well as inspect diversity approach in incorporating STEM into in learning physics . In addition to mapping existing studies, review this also aims For give runway strong theoretical For STEM implementation in the future in increase skills cognitive student.

Therefore that, is necessary something review library systematic study in a way comprehensive results study related STEM integration in education physics as well as its influence to skills cognitive students . Review library systematic This aim to (1) identify forms STEM integration in learning physics, (2) analyzing influence STEM integration towards various aspect skills cognitive students, and (3) mapping trend as well as gap research that can become base for study furthermore.

## 2. METHOD

This study is review literature systematic review (SLR) which examines findings from study previously about the impact of STEM on cognitive students. This study follow Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria.

PRISMA is used For ensure that results review systematic can reliable, because PRISMA started review systematic through the process of identification, filtering or selection, testing eligibility, data inclusion, and finally data (Hikmah & Dkk, 2025)(Dhiya et al., 2025).

After identified, each relevant articles collected through search systematic use PICO elements (Population, Intervention, Comparison, Outcome) for break SLR's purpose is to be a keyword that can searched, so that facilitate the formulation process question research (Eriksen & Frandsen, 2018). Application of PICO in research is as following:

**Table 1.** Scope SLR research based on PICO

| Element      | Information                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------|
| Population   | Students in various level education follow STEM learning in schools .                                                 |
| Intervention | Use teaching materials or STEM integration in the learning process physics .                                          |
| Comparison   | Compare ability cognitive student without using STEM in learning physics .                                            |
| Results      | Identifying the impact of STEM on learning physics and progress ability cognitive student after the learning process. |

Based on framework PICO work , keywords specific chosen For align the search process with The objectives of this SLR are “STEM”, “ cognitive ”, and “ learning ” . physics ” . Search done use Publish or Perish application in various databases including Google Scholar, Semantic Scholar, Scopus, and ERIC. Boolean operators are applied For perfect results , using the search string the following : (“STEM”) AND (“cognitive”) AND (“learning”) (“physics ” ) ; (“STEM”) AND (“ cognitive ”). This process produced a total of 250 articles at this stage identification before apply criteria inclusion and exclusion.

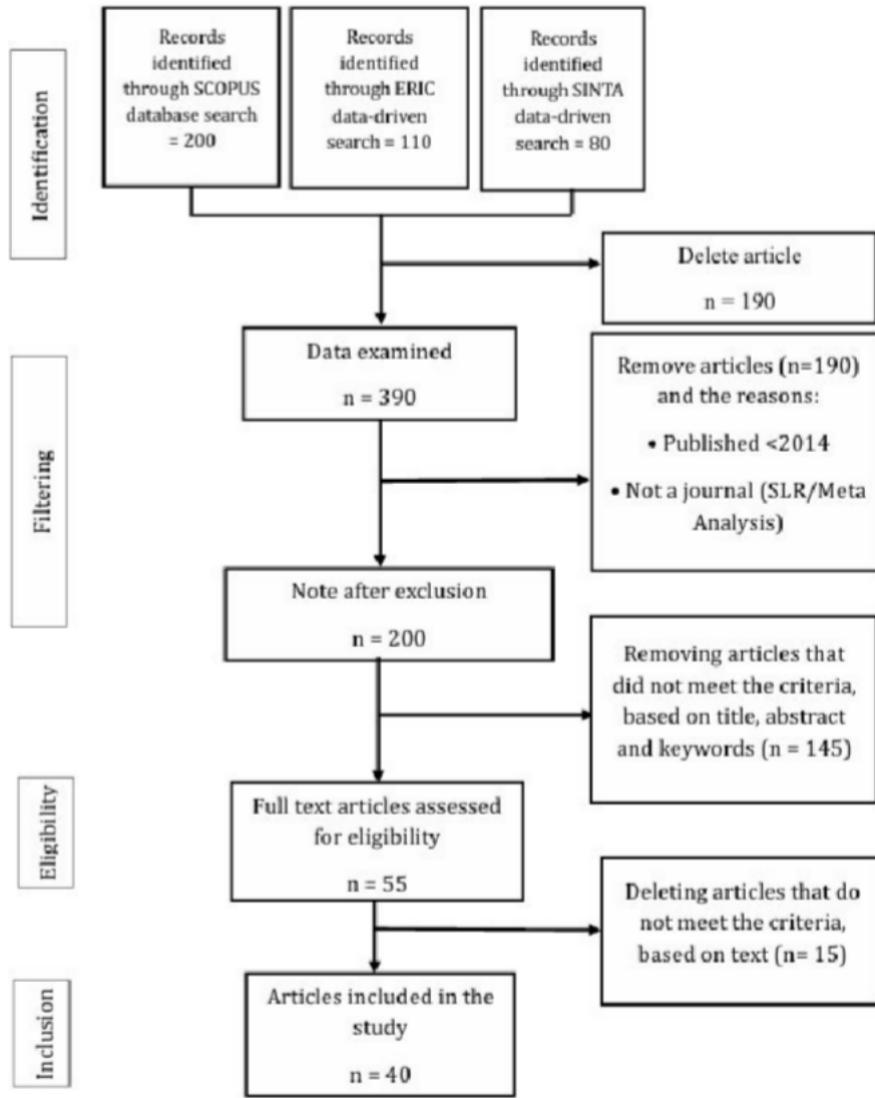



Figure 1. PRISMA Flowchart

After that, at the stage filtering, articles will be chosen more carefully with a read abstract and its contents. To ensure relevance and quality. This process started with selection. Year selected publications covers from 2014 to 2025, with the objective to ensure that articles found are up-to-date and appropriate with development learning physics in schools. After the screening process, the next stage is eligibility done to determine whether the article fulfills the research criteria that have been set. Articles that do not fulfill the criteria will be deleted from the list.

Finally, at the stage inclusion, articles selected will be analyzed more deeply to get findings that can contribute to the development of electronic modules and flipbooks in learning physics. With this approach, it is hoped that the study will produce a comprehensive analysis about how the use of STEM in learning physics increases students' cognitive skills. It is hoped that the findings of this study will provide useful advice for educators to create more creative learning materials. The article will be reviewed using the PRISMA flowchart. The selection process of articles that will be reviewed in this study is done with the following PRISMA stages, as shown in the figure 1.

After obtaining 40 articles that were reviewed and fulfilled the criteria of inclusion and exclusion, the articles are analyzed. Until the moment that, a report is prepared. The report follows PRISMA guidelines in the study. This is from the website, which consists of the checklist following: (1) title, which is the title of the article. This is the Integration of STEM in Physics Education and its Impact on Cognitive Skills: A Systematic-Literature Review (2014-2025); (2) abstract, which consists of background, methods, results, and conclusions from the search literature analyzed; (3) introduction, section containing the objective of the review literature, namely to determine whether the use of STEM can increase students' cognitive skills; (4) methods, points containing information about how the search process works. The literature conducted, sources and criteria what works as an article filter, and the number of articles that will be analyzed. At this stage, this identification of articles is also done.

use application Integrated PoP with Google Scholar, Scopus, after That articles found filtered using keywords. (5) results , from selection relevant articles , 40 articles were obtained For analysis thematic For grouping findings study based on type skills cognitive studied as well as form STEM integration implemented in learning physics ; (6) discussion , stage This containing review from every articles analyzed , results search article research that has been done previously ; (7) conclusion , stage This is conclusion from article scientific that has analyzed and reviewed .

### 3. RESULTS AND DISCUSSION

#### 3.1. Results

Review results library systematic This show that STEM integration in education physics give contribution significant to development skills cognitive student (Loof et al., 2022). Findings This consistent with theory constructivism which emphasizes that knowledge built in a way active through experience meaningful learning . Learning STEM- based provides experience demanding learning student For linking draft physics with context real , so that push the occurrence of cognitive processes level tall (Nor et al., 2016).

Improvement ability think critical and problem solving reported issues in various study show that STEM is effective in shift paradigm learning from teacher- centered become student- centered (Series, 2019)(Evcıl & Arslan, 2021). Through activity based projects and engineering , students involved in a way active in the learning process , starting from planning , implementation , to evaluation . This is in line with objective education modern physics that does not only focused on results Study cognitive , but also on the thinking process scientific .

Although Thus , success STEM implementation is highly dependent on teacher readiness and support system education . Teachers are required For own adequate understanding about integration interdisciplinary as well as ability designing authentic and meaningful learning . Therefore that , training and development professional teachers become aspect crucial in support sustainability implementation of STEM in schools .

#### 3.2. Discussion

##### 3.2.1. Forms of STEM Integration in Physics Learning

STEM integration in education physics done with linking draft physics with problem relevant technology and engineering with life daily (Asrizal et al., 2025)(Asrizal & Ashel, 2023)(Syamra, 2025)(Burrows & Barber, n.d.). For example , the material waves and optics integrated with technology fiber optics , concept electricity and energy associated with generator electricity and energy renewable , as well as material mechanics applied in design tool simple . Approach This push student For No only understand concept , but also apply it in the design and problem solving process problem (Sulistiani et al., 2024)(Series, 2019)(Restanti et al., 2023).

##### 3.2.2. The Impact of STEM Integration on Think Critical

Most of the articles analyzed show that learning physics STEM - based significant increase ability think critical student (W. R. Sari & Prayitno, 2024)(Novia & Dwi, 2023). Activities demanding learning student For identify problems , analyzing data, formulating hypothesis , and evaluate solution push development ability think critical . Improvement This seen on the indicator ability analysis , evaluation , and reasoning logical .

##### 3.2.3. Influence to Understanding Concepts and HOTS

STEM integration is also evident increase understanding draft physics and skills think level high (HOTS) (Restanti et al., 2023)(S. Sari et al., 2021)(Buar & Obiedo, n.d.). Learning based projects and experiments allows student build draft through experience directly , so that draft physics No only understood in a way abstract , but also contextual . Some study report improvement significant on ability analysis , synthesis , and evaluation after implementation STEM (Series, n.d.)(Series, 2023).

##### 3.2.4. Influence to Ability Solution to problem

Ability solution problem is one of the aspect skills the most cognitive investigated in STEM context . Review results show that learning physics effective STEM- based in increase ability student in formulate problem , designing solutions , and testing results in a way systematic . Engineering process in STEM provides framework clear work for student in finish problem complex (Pendidikan et al., 2012)(Restanti et al., 2023)(Nor et al., 2016).

### 3.2.5. Supporting Factors and Obstacles STEM Implementation

Apart from the impact positive, some The article also identifies factor supporters and obstacles in STEM implementation. Supporting factors covering teacher readiness, availability of media and teaching materials, and support curriculum. Meanwhile that, the obstacles that often reported is limitations means infrastructure, time limited learning, as well as lack of teacher training in designing learning STEM-based [6]

## 4. CONCLUSION AND RECOMMENDATION

Based on results review library systematic against 40 articles research, can concluded that STEM integration in education physics influential positive to skills cognitive students. Approach This proven effective in increase ability think critical, understanding concepts, HOTS, and skills solution problem. With Thus, learning physics STEM-based worthy For implemented in a way more wide as a learning strategy innovative in increase quality education physics. Research furthermore recommended For study effectiveness STEM integration in quantitative through meta-analysis as well as explore application of STEM in various fields level education and topics different physics.

## 5. ACKNOWLEDGE

Writer say Thank You to the Lecturers in Charge of the International Study Results Study Course, Prof. Dr. Agus Suyatna, M.Si and Prof. Dr. Abdurrahman, M.Si with code eye KFI825104 lecture. And support technical to friends of the Master of Physics Education, University of Lampung.

## REFERENCES

Aini, F. Q. (2017). *PEMBELAJARAN BERBASIS STEM*. 01, 50–57.

Alaini, U. N., Wahyudi, I., & Suyatna, A. (2022). Implementasi E-Modul Berbasis STEM Berbantuan LMS Untuk Meningkatkan Hasil Belajar Peserta Didik di Era Covid-19. *Jurnal Ilmu Fisika Dan Pembelajarannya (JIFP)*, 6(2), 1–8. <https://doi.org/10.19109/jifp.v6i2.10702>

Asrizal, A., Annisa, N., Ahzari, S., & Helma, H. (2025). *Interactive multimedia sound and light waves integrated STEM to develop concept understanding and literacy skills of students*. 22(1), 18–32.

Asrizal, A., & Ashel, H. (2023). *STEM-integrated physics digital teaching material to develop conceptual understanding and new literacy of students*. 19(7).

Baran, E., Bilici, S. C., Mesutoglu, C., & Ocak, C. (2016). *Moving STEM Beyond Schools : Students ' Perceptions about an Out-of- School STEM Education Program*. 4(1). <https://doi.org/10.18404/ijemst.71338>

Buar, C. L., & Obiedo, R. V. (n.d.). *HOTS profile of physics education students in STEM-based classes using PhET media HOTS profile of physics education students in STEM-based classes using PhET media*. <https://doi.org/10.1088/1742-6596/1157/3/032021>

Burrows, A., & Barber, B. (n.d.). *education sciences Integrated STEM : Focus on Informal Education and Community Collaboration through Engineering*. <https://doi.org/10.3390/educsci8010004>

Dhiya, R., Iffah, L., Subanti, S., Usodo, B., & Nurhasanah, F. (2025). *Systematic literature review : Ethnomathematics research in Indonesia*. 10(1), 28–40. <https://doi.org/10.23917/jramathedu.v10i1.5621>

Eriksen, M. B., & Frandsen, T. F. (2018). *The impact of patient , intervention , comparison , outcome ( PICO ) as a search strategy tool on literature search quality : a systematic review*. 106(October), 420–431.

Evc̄im, İ., & Arslan, M. (2021). *An Investigation into the Development of the Force and Energy Unit through STEM Integration in Science Course and its Effects on Students ' Critical Thinking Skills*. 8(3), 130–141.

Fadil, B. El. (2004). *Empowering learning through integration : Enhancing understanding of variables and functions in the context of STEM education*. 2011, 248–263.

Hikmah, N., & Dkk. (2025). *Uncovering The Potential Of Ethnoscience In Science Learning To Improve Students' Literacy: A Systematic-Literature Review (2014–2024)*. 14(3), 550–562. <https://doi.org/10.15294/jpii.v14i3.19591>

Khalil, R. Y., Tairab, H., Qablan, A., Alarabi, K., & Mansou, Y. (2023). STEM-Based Curriculum and Creative Thinking in High School Students. *Education Sciences*, 1–22. <https://doi.org/https://doi.org/10.3390/educsci13121195>

Kusuma, M. D., Rosidin, U., Abdurrahman, A., & Suyatna, A. (2017). The Development of Higher Order Thinking Skill (Hots) Instrument Assessment In Physics Study. *IOSR Journal of Research & Method in Education (IOSRJRME)*, 07(01), 26–32. <https://doi.org/10.9790/7388-0701052632>

Loof, H. De, Pauw, J. B., & Petegem, P. Van. (2022). *Integrated STEM Education : The Effects of a Long-Term Intervention on Students ' Cognitive Performance*. 7(1), 1–17.

Mart, G., & Naranjo-correa, F. L. (2022). *education sciences Development of STEM Instructional Resources for Teaching Optics to Teachers-in-Training : Influence on Learning and Teacher Self-Efficacy*.

Muyassarah, A., Ratu, T., & Erfan, M. (2019). *Pengaruh Pembelajaran Fisika Berbasis STEM Terhadap Kemampuan Motorik Siswa*. 1–6.

Nagdi, M. El, Leammukda, F., & Roehrig, G. (2018). *Developing identities of STEM teachers at emerging STEM schools*. 1–13.

Narul, H. (2024). *Pengaruh Pendekatan Stem Terhadap Peningkatan Pemahaman Konsep Fisika Di Sekolah Menengah Atas*. 34–38.

Nilyani, K., & Ratnawulan. (2023). Needs Analysis of Physics E-Module Based on Problem Based Learning Model Integrated 21St Century Learning. *International Journal of Advanced Research*, 11(09), 14–23. <https://doi.org/10.21474/ijar01/17497>

Nor, W., Wan, F., Arsal, N. M., Othman, O., Halim, L., Rasul, M. S., Osman, K., & Iksan, Z. (2016). *Fostering students ' 21st century skills through Project Oriented Problem Based Learning ( POPBL ) in integrated STEM education program*. 17(1).

Novia, K., & Dwi, Y. (2023). *Pengembangan Keterampilan Berpikir Kritis Melalui Pembelajaran Fisika Berbasis STEM Materi Teori Kinetik Gas*. 8, 109–123.

Lestari, I. F. (2012). *Pendekatan Science , Technology , Engineering , and Mathematics ( STEM ) untuk Meningkatkan Kemampuan Pemecahan Masalah Fisika Siswa pada Konsep Tekanan Hidrostatis*. 215–221.

Rahmayani, M., & Asrizal, A. (2023). Enhancing Student's Skills: Need Analysis To Develop E-Modul Integrated Problem-Based Learning Model On Smartphone-Based. *Physics Learning and Education*, 1(2), 81–90. <https://doi.org/10.24036/ple.v1i2.32>

Restanti, M. A., Hasnunidah, N., Suyatna, A., & Abdurrahman, A. (2023). Production and Utilization of Moodle-Based e-Learning to Enhance Higher-Order Thinking Skills with the STEM Approach. *Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah*, 8(2), 237. <https://doi.org/10.24042/tadris.v8i2.19298>

Saputri, R., Wilujeng, I., Suyanta, S., Nurohman, S., Jumadi, J., Ilafi, M. M., & Purnama, A. Y. (2025). *Improving problem-solving skills through the physics education technology assisted problem based learning model electronic student worksheets*. December, 1–5.

Sari, S., Suyatna, A., & Viyanti. (2021). Need assesment and design of e-modules to stimulate HOTS on dynamic fluid materials with the STEM approach. *IOP Conference Series: Earth and Environmental Science*, 1796(1). <https://doi.org/10.1088/1742-6596/1796/1/012003>

Sari, W. R., & Prayitno, B. A. (2024). *Pengembangan E-Modul Berbasis Pjbl-Stem Untuk Meningkatkan Keterampilan Berpikir Kritis Dan Kreatif Peserta Didik Smk Kelas X Pada Materi Proyek Ipas*. 21, 144–153.

Series, C. (n.d.). *Impact of The STEM approach with formative assessment in PjBL on students ' critical thinking skills Impact of The STEM approach with formative assessment in PjBL on students ' critical thinking skills*. <https://doi.org/10.1088/1742-6596/2165/1/012044>

Series, C. (2019). *Building Scientific Literacy and Physics Problem Solving Skills through Inquiry-Based Learning for Building Scientific Literacy and Physics Problem Solving Skills through Inquiry-Based Learning for STEM Education*. 0–6.

Series, C. (2023). *The integration of mobile learning in STEM-PjBL for Physics learning : a systematic literature review The integration of mobile learning in STEM-PjBL for Physics learning : a systematic literature review*. <https://doi.org/10.1088/1742-6596/2596/1/012065>

Sulistiani, Suyatna, A., & Rosidin, U. (2024). Pembelajaran Berdiferensiasi Berbantuan LKPD Bermuatan STEM pada Materi Energi Alternatif untuk Meningkatkan Keterampilan Proses Sains dan Creative Problem Solving. *Jurnal Penelitian Pendidikan IPA*, 10(1), 385–395. <https://doi.org/10.29303/jppipa.v10i1.5253>

Sunaryo, Vina, S., Salsa Ghina, K., & Mifta Rizkiana, H. (2022). Development of Physics Learning Interactive Multimedia Integrated with Student Worksheets on the Subject of Vibration for High School

Students Development of Physics Learning Interactive Multimedia Integrated with Student Worksheets on the Subject of Vibr. *Journal of Physics: Conference Series*. <https://doi.org/10.1088/1742-6596/2309/1/012070>

Syamra, F. M. (2025). *Comparing project-based learning and integrated STEM approach in enhancing scientific creativity in renewable energy education*. 10(3).